0000000000520705

AUTHOR

S. Bagchi

A neutron spectrometer for studying giant resonances with (p, n) reactions in inverse kinematics

A neutron spectrometer, the European Low-Energy Neutron Spectrometer (ELENS), has been constructed to study exotic nuclei in inverse-kinematics experiments. The spectrometer, which consists of plastic scintillator bars, can be operated in the neutron energy range of 100 keV to 10 MeV. The neutron energy is determined using the time-of-flight technique, while the position of the neutron detection is deduced from the time-difference information from photomultipliers attached to both ends of each bar. A novel wrapping method has been developed for the plastic scintillators. The array has a larger than 25% detection efficiency for neutrons of approximately 500 keV in kinetic energy and an angul…

research product

Nature of seniority symmetry breaking in the semimagic nucleus $^{94}Ru$

Physical review / C 105(3), L031304 (2022). doi:10.1103/PhysRevC.105.L031304

research product

High-resolution, accurate MR-TOF-MS for short-lived, exotic nuclei of few events in their ground and low-lying isomeric states

Mass measurements of fission and projectile fragments, produced via $^{238}$U and $^{124}$Xe primary beams, have been performed with the multiple-reflection time-of-flight mass spectrometer (MR-TOF-MS) of the FRS Ion Catcher with a mass resolving powers (FWHM) up to 410,000 and an uncertainty of $6\cdot 10^{-8}$. The nuclides were produced and separated in-flight with the fragment separator FRS at 300 to 1000 MeV/u and thermalized in a cryogenic stopping cell. The data-analysis procedure was developed to determine with highest accuracy the mass values and the corresponding uncertainties for the most challenging conditions: down to a few events in a spectrum and overlapping distributions, ch…

research product

A Novel Method for the Measurement of Half-Lives and Decay Branching Ratios of Exotic Nuclei

A novel method for simultaneous measurement of masses, Q-values, isomer excitation energies, half-lives and decay branching ratios of exotic nuclei has been demonstrated. The method includes first use of a stopping cell as an ion trap, combining containment of precursors and decay-recoils for variable durations in a cryogenic stopping cell (CSC), and afterwards the identification and counting of them by a multiple-reflection time-of-flight mass spectrometer (MR-TOF-MS). Feasibility has been established by recording the decay and growth of $^{216}$Po and $^{212}$Pb (alpha decay) and of $^{119m2}$Sb (t$_{1/2}$ = 850$\pm$90 ms) and $^{119g}$Sb (isomer transition), obtaining half-lives and bran…

research product

Mass and half-life measurements of neutron-deficient iodine isotopes

The European physical journal / A 56(5), 143 (2020). doi:10.1140/epja/s10050-020-00153-5

research product

Mass measurements of As, Se, and Br nuclei, and their implication on the proton-neutron interaction strength toward the N=Z line

Mass measurements of the $^{69}$As, $^{70,71}$Se and $^{71}$Br isotopes, produced via fragmentation of a $^{124}$Xe primary beam at the FRS at GSI, have been performed with the multiple-reflection time-of-flight mass spectrometer (MR-TOF-MS) of the FRS Ion Catcher with an unprecedented mass resolving power of almost 1,000,000. For the $^{69}$As isotope, this is the first direct mass measurement. A mass uncertainty of 22 keV was achieved with only 10 events. For the $^{70}$Se isotope, a mass uncertainty of 2.6 keV was obtained, corresponding to a relative accuracy of $\delta$m/m = 4.0$\times 10^{-8}$, with less than 500 events. The masses of the $^{71}$Se and $^{71}$Br isotopes were measured…

research product

High-resolution, accurate multiple-reflection time-of-flight mass spectrometry for short-lived, exotic nuclei of a few events in their ground and low-lying isomeric states

Physical review / C covering nuclear physics 99(6), 064313 (2019). doi:10.1103/PhysRevC.99.064313

research product