0000000000520765
AUTHOR
A. Falou
Beam test results of IHEP-NDL Low Gain Avalanche Detectors(LGAD)
A High-Granularity Timing Detector (HGTD) is proposed based on the Low-Gain Avalanche Detector (LGAD) for the ATLAS experiment to satisfy the time resolution requirement for the up-coming High Luminosity at LHC (HL-LHC). We report on beam test results for two proto-types LGADs (BV60 and BV170) developed for the HGTD. Such modules were manufactured by the Institute of High Energy Physics (IHEP) of Chinese Academy of Sciences (CAS) collaborated with Novel Device Laboratory (NDL) of the Beijing Normal University. The beam tests were performed with 5 GeV electron beam at DESY. The timing performance of the LGADs was compared to a trigger counter consisting of a quartz bar coupled to a SiPM read…
Beam test measurements of Low Gain Avalanche Detector single pads and arrays for the ATLAS High Granularity Timing Detector
For the high luminosity upgrade of the LHC at CERN, ATLAS is considering the addition of a High Granularity Timing Detector (HGTD) in front of the end cap and forward calorimeters at |z|= 3.5 m and covering the region 2.4 <|η|< 4 to help reducing the effect of pile-up. The chosen sensors are arrays of 50 μm thin Low Gain Avalanche Detectors (LGAD). This paper presents results on single LGAD sensors with a surface area of 1.3×1.3 mm2 and arrays with 2×2 pads with a surface area of 2×2 mm2 or 3×3 mm2 each and different implant doses of the p+ multiplication layer. They are obtained from data collected during a beam test campaign in autumn 2016 with a pion beam of 120 GeV energy at the CERN SP…