Partially hyperbolic diffeomorphisms with a compact center foliation with finite holonomy
The thesis classifies partially hyperbolic diffeomorphisms with a compact center foliation with finite holonomy. Under the further assumption of a one-dimensional unstable bundle we show the following: If the unstable bundle is oriented then the system fibers over a hyperbolic toral automorphism. We further establish that the system has a dense orbit of center leaves. During the proof we show a Shadowing Lemma and the dynamical coherence without restrictions of the dimensions.
Partially hyperbolic diffeomorphisms with a uniformly compact center foliation: the quotient dynamics
We show that a partially hyperbolic$C^{1}$-diffeomorphism$f:M\rightarrow M$with a uniformly compact$f$-invariant center foliation${\mathcal{F}}^{c}$is dynamically coherent. Further, the induced homeomorphism$F:M/{\mathcal{F}}^{c}\rightarrow M/{\mathcal{F}}^{c}$on the quotient space of the center foliation has the shadowing property, i.e. for every${\it\epsilon}>0$there exists${\it\delta}>0$such that every${\it\delta}$-pseudo-orbit of center leaves is${\it\epsilon}$-shadowed by an orbit of center leaves. Although the shadowing orbit is not necessarily unique, we prove the density of periodic center leaves inside the chain recurrent set of the quotient dynamics. Other interesting proper…