0000000000522244

AUTHOR

Donald L. Smith

showing 3 related works from this author

How to decrease the negative impact of water stress on soybean production : application of thuricin-17 and nod factors

2014

International audience; Climate change will most certainly result in increased drought stress events. Besides, water scarcity is already the abiotic stress most limiting to crop production and this is particularly relevant for drought-sensitive legumes. For example, a moderate level of water deficit can reduce soybean production by approximately 40%. In this context, the objective of this study was to develop a method involving the use of beneficial plant x microorganism interaction in order to reduce the impact of water stress on soybean production. In particular we investigated whether the application of two molecules (thuricin-17 or lipochitooligosaccharides (LCO)) produced by a Plant Gr…

[SDV] Life Sciences [q-bio][SDE] Environmental Sciencesnod factors[SDV]Life Sciences [q-bio]fungi[SDE]Environmental Sciencesfood and beverages[SDV.BV]Life Sciences [q-bio]/Vegetal Biology[SDV.BV] Life Sciences [q-bio]/Vegetal Biologydroughtsoybean
researchProduct

Morphology and yield response to weed pressure by corn hybrids differing in canopy architecture

2001

Abstract Recently, corn ( Zea mays L.) hybrids accumulating more leaf area above the ear, maturing earlier, yielding better in narrower row spacings and tolerating higher population densities than conventional hybrids have been developed. However, no research has been conducted to assess their ability to compete with weeds. The objective of this study was to quantify morphological and grain yield responses of hybrids with differing canopy architectures to the presence and absence of weeds. Field experiments were conducted in 1996, 1997, and 1998 at Ste. Anne de Bellevue, Quebec and in 1996 at Ottawa, Ontario. Three hybrids, leafy reduced-stature (LRS), late maturing big leaf (LMBL), and con…

[SDV.SA]Life Sciences [q-bio]/Agricultural sciences0106 biological sciencesCanopy[SDV.SA] Life Sciences [q-bio]/Agricultural sciencesmedia_common.quotation_subjectField experimentSoil Science04 agricultural and veterinary sciencesPlant ScienceInterspecific competition15. Life on landBiology01 natural sciencesPopulation densityCompetition (biology)Agronomy040103 agronomy & agriculture0401 agriculture forestry and fisheriesPoaceaeWeedAgronomy and Crop ScienceComputingMilieux_MISCELLANEOUS010606 plant biology & botanymedia_commonHybrid
researchProduct

Decoupling of light intensity effects on the growth and development of C3 and C4 weed species through sucrose supplementation

2002

Light availability has a profound effect on plant growth and development. One of the ways to study the effects of light intensity on plant growth and development without the confounding problem of photosynthate availability is sucrose injection/supplementation. A greenhouse experiment was conducted to evaluate the effects of light levels (0% and 75% shade) and sucrose injection (distilled water or 150 g sucrose l(-1)) on three weed species: redroot pigweed (Amaranthus retroflexus L., C4), lambsquarters (Chenopodium album L., C3) and velvetleaf (Abutilon theophrasti Medic., C3). The average total sucrose uptake was 7.6 and 5.9 g per plant for 0% and 75% shading, respectively, representing 47…

0106 biological sciencesSucroseSucroseLightPhysiologyPlant DevelopmentPlant ScienceBiologyPhotosynthesisPlant Roots01 natural sciencesCHENOPODE[SDV.BV.BOT] Life Sciences [q-bio]/Vegetal Biology/BotanicsChenopodiumchemistry.chemical_compoundDry weightBotanyDry matterMalvaceaeComputingMilieux_MISCELLANEOUS2. Zero hungerAmaranthusPlant Stemsfungifood and beverages04 agricultural and veterinary sciences[SDV.BV.BOT]Life Sciences [q-bio]/Vegetal Biology/BotanicsPlants15. Life on landAMARANTEPlant LeavesLight intensityHorticulturechemistrySeedsShoot040103 agronomy & agriculture0401 agriculture forestry and fisheriesShadingWeed010606 plant biology & botanyJournal of Experimental Botany
researchProduct