0000000000522526
AUTHOR
Lauri Kahanpää
Quasi-Projective Varieties
We have developed the theory of affine and projective varieties separately. We now introduce the concept of a quasi-projective variety, a term that encompasses both cases. More than just a convenience, the notion of a quasi-projective variety will eventually allow us to think of an algebraic variety as an intrinsically defined geometric object, free from any particular embedding in affine or projective space.
Affine Algebraic Varieties
Algebraic geometers study zero loci of polynomials. More accurately, they study geometric objects, called algebraic varieties, that can be described locally as zero loci of polynomials. For example, every high school mathematics student has studied a bit of algebraic geometry, in learning the basic properties of conic sections such as parabolas and hyperbolas.
Maps to Projective Space
One of the main goals of algebraic geometry is to understand the geometry of smooth projective varieties. For instance, given a smooth projective surface X, we can ask a host of questions whose answers might help illuminate its geometry. What kinds of curves does the surface contain? Is it covered by rational curves, that is, curves birationally equivalent to ℙ1? If not, how many rational curves does it contain, and how do they intersect each other? Or is it more natural to think of the surface as a family of elliptic curves (genus-1 Riemann surfaces) or as some other family? Is the surface isomorphic to ℙ2 or some other familiar variety on a dense set? What other surfaces are birationally …