0000000000522603
AUTHOR
Alexander G. Schwing
From connected pathway flow to ganglion dynamics
During imbibition, initially connected oil is displaced until it is trapped as immobile clusters. While initial and final states have been well described before, here we image the dynamic transient process in a sandstone rock using fast synchrotron-based X-ray computed microtomography. Wetting film swelling and subsequent snap off, at unusually high saturation, decreases nonwetting phase connectivity, which leads to nonwetting phase fragmentation into mobile ganglia, i.e., ganglion dynamics regime. We find that in addition to pressure-driven connected pathway flow, mass transfer in the oil phase also occurs by a sequence of correlated breakup and coalescence processes. For example, meniscus…
Subsecond pore‐scale displacement processes and relaxation dynamics in multiphase flow
With recent advances at X‐ray microcomputed tomography (μCT) synchrotron beam lines, it is now possible to study pore‐scale flow in porous rock under dynamic flow conditions. The collection of four‐dimensional data allows for the direct 3‐D visualization of fluid‐fluid displacement in porous rock as a function of time. However, even state‐of‐the‐art fast‐μCT scans require between one and a few seconds to complete and the much faster fluid movement occurring during that time interval is manifested as imaging artifacts in the reconstructed 3‐D volume. We present an approach to analyze the 2‐D radiograph data collected during fast‐μCT to study the pore‐scale displacement dynamics on the time s…
Real-time 3D imaging of Haines jumps in porous media flow.
Newly developed high-speed, synchrotron-based X-ray computed microtomography enabled us to directly image pore-scale displacement events in porous rock in real time. Common approaches to modeling macroscopic fluid behavior are phenomenological, have many shortcomings, and lack consistent links to elementary pore-scale displacement processes, such as Haines jumps and snap-off. Unlike the common singular pore jump paradigm based on observations of restricted artificial capillaries, we found that Haines jumps typically cascade through 10–20 geometrically defined pores per event, accounting for 64% of the energy dissipation. Real-time imaging provided a more detailed fundamental understanding o…