0000000000522654

AUTHOR

Null The Isolde Collaboration

Isotope shifts and nuclear-charge radii in singly ionizedCa40–48

The isotope shifts in the resonance lines 4${\mathit{s}}_{1/2}$\ensuremath{\rightarrow}4${\mathit{p}}_{1/2,3/2}$ in Ca ii have been measured for the isotopes $^{40\mathrm{\ensuremath{-}}48}\mathrm{Ca}$ by fast-ion-beam collinear laser spectroscopy. Atomic many-body perturbation theory was then used to calculate the electronic factor for the field shift, giving F=-285(3) MHz/${\mathrm{fm}}^{2}$. The estimate of the uncertainty in F is based on the agreement at the level of 1% for the 4s and 4p hyperfine structures obtained using the same wave functions which include core polarization and pair correlation to all orders. The theoretical value is in excellent agreement with the result F=-283(6)…

research product

New states in heavy Cd isotopes and evidence for weakening of the N = 82 shell structure

A chemically selective laser ion source has been used in a β-decay study of heavy Ag isotopes into even-even Cd nuclides. Gamma-spectroscopic techniques in time-resolving event-by-event and multiscaling modes have permitted the identification of the first 2+ and 4+ levels in 126Cd78, 128Cd80, and tentatively the 2+ state in 130Cd82. From a comparison of these new states in 48Cd with the E(2+) and E(4+)/E(2+) level systematics of 46Pd and 52Te isotopes and several recent model predictions, possible evidence for a weakening of the spherical N = 82 neutron-shell below double-magic 132Sn is obtained.

research product

Decay of Neutron-Rich Mn Nuclides and Deformation of Heavy Fe Isotopes

The use of chemically selective laser ionization combined with beta-delayed neutron counting at CERN/ISOLDE has permitted identification and half-life measurements for 623-ms Mn-61 up through 14-ms Mn-69. The measured half-lives are found to be significantly longer near N=40 than the values calculated with a QRPA shell model using ground-state deformations from the FRDM and ETFSI models. Gamma-ray singles and coincidence spectroscopy has been performed for Mn-64 and Mn-66 decays to levels of Fe-64 and Fe-66, revealing a significant drop in the energy of the first 2+ state in these nuclides that suggests an unanticipated increase in collectivity near N=40.

research product