0000000000522819

AUTHOR

H. Maghraoui-meherzi

showing 2 related works from this author

The effects of thermal treatment on structural, morphological and optical properties of electrochemically deposited Bi2S3 thin films

2017

Abstract Thin films of bismuth sulfide (Bi 2 S 3 ) have been electrochemically deposited on indium–doped tin oxide substrates from aqueous solutions of Bi(NO 3 ) 3 , ethylene diamine tetraacetic acid (EDTA) and Na 2 S 2 O 3 . The structural properties of the films were characterized using X–ray diffraction and high–resolution transmission electron microscopy analyses. The film crystallizes in an orthorhombic structure of Bi 2 S 3 along with metallic bismuth. Thermal annealing of the prepared film in sulfur atmosphere improves its crystallinity and cohesion. The band gap values of the deposited film before and after annealing at 400 °C were found to be 1.28 and 1.33 eV, respectively.

010302 applied physicsMaterials scienceAnnealing (metallurgy)Band gapInorganic chemistryMetals and Alloyschemistry.chemical_element02 engineering and technologySurfaces and InterfacesThermal treatment021001 nanoscience & nanotechnologyTin oxide01 natural sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsBismuthCrystallinitychemistryChemical engineeringTransmission electron microscopy0103 physical sciencesMaterials ChemistryThin film0210 nano-technologyThin Solid Films
researchProduct

Growth of manganese sulfide (α-MnS) thin films by thermal vacuum evaporation: Structural, morphological and optical properties

2016

Abstract MnS thin films have been successfully prepared by thermal evaporation method at different substrate temperatures using different masses of MnS powder. The prepared films were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX) and UV–visible spectrophotometry. The XRD measurements show that the films crystallized in the pure α-MnS for substrate temperatures above 100 °C. The optical bandgap of thin films is found to be in the range of 3.2–3.3 eV. A factorial experimental design was used for determining the influence of the two experimental parameters on the films growth.

Materials sciencemedicine.diagnostic_testScanning electron microscopebusiness.industryBand gapAnalytical chemistryNanotechnology02 engineering and technologySubstrate (electronics)010402 general chemistry021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciences0104 chemical sciencesCarbon filmSemiconductorVacuum depositionSpectrophotometrymedicineGeneral Materials ScienceThin film0210 nano-technologybusinessMaterials Chemistry and Physics
researchProduct