0000000000523046
AUTHOR
Satish Bastola
Impact of hydrologically driven hillslope erosion and landslide occurrence on soil organic carbon dynamics in tropical watersheds
The dynamics of soil organic carbon (SOC) in tropical forests play an important role in the global carbon (C) cycle. Past attempts to quantify the net C exchange with the atmosphere in regional and global budgets do not systematically account for dynamic feedbacks among linked hydrological, geomorphological, and biogeochemical processes, which control the fate of SOC. Here we quantify effects of geomorphic perturbations on SOC oxidation and accumulation in two adjacent wet tropical forest watersheds underlain by contrasting lithology (volcaniclastic rock and quartz diorite) in the Luquillo Critical Zone Observatory. This study uses the spatially-explicit and physically-based model of SOC dy…
Integration of fuzzy logic and image analysis for the detection of gullies in the Calhoun Critical Zone Observatory using airborne LiDAR data
Abstract The entire Piedmont of the Southeastern United States, where the Calhoun Critical Zone Observatory (CCZO) is located, experienced one of the most severe erosive events of the last two centuries. Forested areas were cleared to cultivate cotton, tobacco, and other crops during the nineteenth and early twentieth century and these land use changes, together with intense rainfalls, initiated deep gullying. An accurate mapping of these landforms is important since, despite some gully stabilization and reforestation efforts, gullies are still major contributors of sediment to streams. Mapping gullies in the CCZO area is hindered by the presence of dense canopy, which precludes the identif…
The role of vegetation on gully erosion stabilization at a severely degraded landscape: A case study from Calhoun Experimental Critical Zone Observatory
Abstract Gully erosion was evidence of land degradation in the southern Piedmont, site of the Calhoun Critical Zone Observatory (CCZO), during the cotton farming era. Understanding of the underlying gully erosion processes is essential to develop gully erosion models that could be useful in assessing the effectiveness of remedial and soil erosion control measures such as gully backfilling, revegetation, and terracing. Development and validation of process-based gully erosion models is difficult because observations of the formation and progression of gullies are limited. In this study, analytic formulations of the two dominant gullying processes, namely, plunge pool erosion and slab failure…