0000000000523172
AUTHOR
Giovanna Tinetti
Ariel: Enabling planetary science across light-years
Ariel, the Atmospheric Remote-sensing Infrared Exoplanet Large-survey, was adopted as the fourth medium-class mission in ESA's Cosmic Vision programme to be launched in 2029. During its 4-year mission, Ariel will study what exoplanets are made of, how they formed and how they evolve, by surveying a diverse sample of about 1000 extrasolar planets, simultaneously in visible and infrared wavelengths. It is the first mission dedicated to measuring the chemical composition and thermal structures of hundreds of transiting exoplanets, enabling planetary science far beyond the boundaries of the Solar System. The payload consists of an off-axis Cassegrain telescope (primary mirror 1100 mm x 730 mm e…
Correcting Exoplanet Transmission Spectra for Stellar Activity with an Optimised Retrieval Framework
Stellar activity in the form of photospheric heterogeneities such as spots and faculae may present a significant noise source for exoplanetary observations by introducing a chromatic contamination effect to the observed transmission spectrum. If this contamination is not identified and corrected for, it can introduce substantial bias in our analysis of the planetary atmosphere. In this work we aim to determine how physically realistic and complex our stellar models must be in order to accurately extract the planetary parameters from transmission spectra. We explore which simplifying assumptions about the host star are valid at first order and examine if these assumptions break down in cases…
A New Look at Spitzer Primary Transit Observations of the Exoplanet HD 189733b
Blind source separation techniques are used to reanalyse two exoplanetary transit lightcurves of the exoplanet HD189733b recorded with the IR camera IRAC on board the Spitzer Space Telescope at 3.6$\mu$m during the "cold" era. These observations, together with observations at other IR wavelengths, are crucial to characterise the atmosphere of the planet HD189733b. Previous analyses of the same datasets reported discrepant results, hence the necessity of the reanalyses. The method we used here is based on the Independent Component Analysis (ICA) statistical technique, which ensures a high degree of objectivity. The use of ICA to detrend single photometric observations in a self-consistent wa…
Constraints on the Volatile Enrichments in HD189733b from Internal Structure Models
International audience
Hot Super-Earths with Hydrogen Atmospheres: A Model Explaining Their Paradoxical Existence
In this paper we propose a new mechanism that could explain the survival of hydrogen atmospheres on some hot super-Earths. We argue that on close-orbiting tidally-locked super-Earths the tidal forces with the orbital and rotational centrifugal forces can partially confine the atmosphere on the nightside. Assuming a super terran body with an atmosphere dominated by volcanic species and a large hydrogen component, the heavier molecules can be shown to be confined within latitudes of $\lesssim 80^{\circ}$ whilst the volatile hydrogen is not. Because of this disparity the hydrogen has to slowly diffuse out into the dayside where XUV irradiation destroys it. For this mechanism to take effect it …