0000000000523348

AUTHOR

Luisa Lara

showing 2 related works from this author

Ariel: Enabling planetary science across light-years

2021

Ariel, the Atmospheric Remote-sensing Infrared Exoplanet Large-survey, was adopted as the fourth medium-class mission in ESA's Cosmic Vision programme to be launched in 2029. During its 4-year mission, Ariel will study what exoplanets are made of, how they formed and how they evolve, by surveying a diverse sample of about 1000 extrasolar planets, simultaneously in visible and infrared wavelengths. It is the first mission dedicated to measuring the chemical composition and thermal structures of hundreds of transiting exoplanets, enabling planetary science far beyond the boundaries of the Solar System. The payload consists of an off-axis Cassegrain telescope (primary mirror 1100 mm x 730 mm e…

[SDU] Sciences of the Universe [physics]Earth and Planetary Astrophysics (astro-ph.EP)[SDU.ASTR.IM] Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Settore FIS/05 - Astronomia E Astrofisica[SDU]Sciences of the Universe [physics][SDU.ASTR.EP]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP][SDU.ASTR.EP] Sciences of the Universe [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP]FOS: Physical sciencesAstrophysics - Instrumentation and Methods for AstrophysicAstrophysics - Instrumentation and Methods for AstrophysicsInstrumentation and Methods for Astrophysics (astro-ph.IM)Astrophysics - Earth and Planetary Astrophysics[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]
researchProduct

A giant exoplanet orbiting a very-low-mass star challenges planet formation models

2019

Surveys have shown that super-Earth and Neptune-mass exoplanets are more frequent than gas giants around low-mass stars, as predicted by the core accretion theory of planet formation. We report the discovery of a giant planet around the very-low-mass star GJ 3512, as determined by optical and near-infrared radial-velocity observations. The planet has a minimum mass of 0.46 Jupiter masses, very high for such a small host star, and an eccentric 204-day orbit. Dynamical models show that the high eccentricity is most likely due to planet-planet interactions. We use simulations to demonstrate that the GJ 3512 planetary system challenges generally accepted formation theories, and that it puts con…

010504 meteorology & atmospheric sciencesGas giant530 PhysicsFOS: Physical sciencesMinimum massAstrophysics::Cosmology and Extragalactic Astrophysics7. Clean energy01 natural sciencesSettore FIS/05 - Astronomia e AstrofisicaPlanet0103 physical sciencesAstrophysics::Solar and Stellar Astrophysics010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)Astrophysics::Galaxy Astrophysics0105 earth and related environmental sciencesEarth and Planetary Astrophysics (astro-ph.EP)PhysicsMultidisciplinary520 AstronomyGiant planetAstronomyPlanetary system620 EngineeringAccretion (astrophysics)ExoplanetOrbitAstrophysics - Solar and Stellar Astrophysics13. Climate actionAstrophysics::Earth and Planetary AstrophysicsAstrophysics - Earth and Planetary AstrophysicsScience
researchProduct