0000000000523739
AUTHOR
E. Gershnabel
Orientation and Alignment Echoes
We present one of the simplest classical systems featuring the echo phenomenon---a collection of randomly oriented free rotors with dispersed rotational velocities. Following excitation by a pair of time-delayed impulsive kicks, the mean orientation or alignment of the ensemble exhibits multiple echoes and fractional echoes. We elucidate the mechanism of the echo formation by the kick-induced filamentation of phase space, and provide the first experimental demonstration of classical alignment echoes in a thermal gas of ${\mathrm{CO}}_{2}$ molecules excited by a pair of femtosecond laser pulses.
Rotational echoes as a tool for investigating ultrafast collisional dynamics of molecules
We show that recently discovered rotational echoes of molecules provide an efficient tool for studying collisional molecular dynamics in high-pressure gases. Our study demonstrates that rotational echoes enable the observation of extremely fast collisional dissipation, at timescales of the order of a few picoseconds, and possibly shorter. The decay of the rotational alignment echoes in ${\mathrm{CO}}_{2}$ gas and ${\mathrm{CO}}_{2}\text{\ensuremath{-}}\mathrm{He}$ mixture up to 50 bar was studied experimentally, delivering collision rates that are in good agreement with the theoretical expectations. The suggested measurement protocol may be used in other high-density media, and potentially …