0000000000523780

AUTHOR

D. Pantelica

New shape isomer in the self-conjugate nucleus $^{72}$Kr

A new isomeric ${0}^{+}$ state was identified as the first excited state in the self-conjugate ($N=Z$) nucleus $^{\mathrm{72}}\mathrm{K}\mathrm{r}$. By combining for the first time conversion-electron and gamma-ray spectroscopy with the production of metastable states in high-energy fragmentation, the electric-monopole decay of the new isomer to the ground state was established. The new ${0}^{+}$ state is understood as the band head of the known prolate rotational structure, which strongly supports the interpretation that $^{\mathrm{72}}\mathrm{K}\mathrm{r}$ is one of the rare nuclei having an oblate-deformed ground state. This observation gives in fact the first evidence for a shape isomer…

research product

Spectroscopy of 253No and its daughters

Abstract New high-statistics data have been obtained on the decay properties of 253 No and its daughters using the reaction 207 Pb( 48 Ca, 2n) 253 No. This was made possible thanks to an improved transmission of fusion–evaporation residues through the VASSILISSA recoil separator and an increased efficiency of the GABRIELA detector setup. The decay schemes of 253 No and 249 Fm have been revisited. The known level scheme of 249 Fm has been confirmed, including a new level at 669 keV excitation energy. The observation of L X-rays in coincidence with the α decay of 249 Fm gives additional support to the ground-state configuration of 1 / 2 + [ 631 ] instead of 5 / 2 + [ 622 ] for 245 Cf. In both…

research product

Beta-decay half-lives at the N = 28 shell closure

Abstract Measurements of the beta-decay half-lives of neutron-rich nuclei (MgAr) in the vicinity of the N =28 shell closure are reported. Some 22 half-lives have been determined, 12 of which for the first time. Particular emphasis is placed on the results for the Si isotopes, the half-lives of which have been extended from N =25 to 28. Comparison with QRPA calculations suggests that 42 Si is strongly deformed. This is discussed in the light of a possible weakening of the spin–orbit potential.

research product