0000000000524444

AUTHOR

Gianluca Chiarappa

showing 2 related works from this author

Engineering approaches in siRNA delivery.

2017

siRNAs are very potent drug molecules, able to silence genes involved in pathologies development. siRNAs have virtually an unlimited therapeutic potential, particularly for the treatment of inflammatory diseases. However, their use in clinical practice is limited because of their unfavorable properties to interact and not to degrade in physiological environments. In particular they are large macromolecules, negatively charged, which undergo rapid degradation by plasmatic enzymes, are subject to fast renal clearance/hepatic sequestration, and can hardly cross cellular membranes. These aspects seriously impair siRNAs as therapeutics. As in all the other fields of science, siRNAs management ca…

0301 basic medicine3003siRNAs Delivery vectors in vitro models Mathematical modeling Physical modelingDelivery vectors; In vitro models; Mathematical modeling; Physical modeling; SiRNAs; 3003Pharmaceutical ScienceNanotechnology02 engineering and technologyComputational biologyBiology03 medical and health sciencesDrug Delivery SystemsHumanssiRNAs; Delivery vectors; in vitro models; Mathematical modeling; Physical modelingRNA Small Interferingin vitro modelsPhysical modelingSettore ING-IND/34 - Bioingegneria IndustrialeHydrogelsDelivery vectorsModels Theoretical021001 nanoscience & nanotechnologyDelivery vectorsiRNAsClinical PracticeHydrogel030104 developmental biologyin vitro modelsiRNAMathematical modeling0210 nano-technologyBlood streamDrug Delivery SystemClearanceHumanInternational journal of pharmaceutics
researchProduct

Antibacterial drug release from a biphasic gel system: Mathematical modelling

2019

Bacterial infections represent an important drawback in the orthopaedic field, as they can develop either immediately after surgery procedures or after some years. Specifically, in case of implants, they are alleged to be troublesome as their elimination often compels a surgical removal of the infected implant. A possible solution strategy could involve a local coating of the implant by an antibacterial system, which requires to be easily applicable, biocompatible and able to provide the desired release kinetics for the selected antibacterial drug. Thus, this work focusses on a biphasic system made up by a thermo-reversible gel matrix (Poloxamer 407/water system) hosting a dispersed phase (…

DrugMaterials sciencemedia_common.quotation_subjectVancomycin HydrochloridePharmaceutical SciencePoloxamer02 engineering and technologyantibacterial drugengineering.material030226 pharmacology & pharmacyDiffusion03 medical and health scienceschemistry.chemical_compoundDrug Delivery Systems0302 clinical medicineMicro-particleCoatingVancomycinAntibacterial drugmedicineAntibacterial drugmedia_commonGelMathematical modellingReproducibility of ResultsMicro-particlesModels Theoretical021001 nanoscience & nanotechnologyAnti-Bacterial AgentsDrug LiberationKineticsPLGAchemistrySettore CHIM/09 - Farmaceutico Tecnologico Applicativoantibacterial drug; Gels; Mathematical modelling; Micro-particles; Orthopaedic implantsPoloxamer 407engineeringOrthopaedic implantsDelivery systemImplant0210 nano-technologyGelsmedicine.drugBiomedical engineeringInternational Journal of Pharmaceutics
researchProduct