0000000000524771

AUTHOR

Shane Wilkins

Continuously tunable diamond Raman laser for resonance ionization experiments at CERN

We demonstrate a highly efficient, continuously tunable, diamond Raman laser operating in the blue region of the spectrum. The linewidth and tunability characteristics of a frequency-doubled Ti:Sapphire laser were transferred directly to the Stokes output, offering great potential for spectroscopic applications using an all-solid-state platform.

research product

Resonance ionization schemes for high resolution and high efficiency studies of exotic nuclei at the CRIS experiment

© 2019 This paper presents an overview of recent resonance ionization schemes used at the Collinear Resonance Ionization Spectroscopy (CRIS) setup located at ISOLDE, CERN. The developments needed to reach high spectral resolution and efficiency will be discussed. Besides laser ionization efficiency and high resolving power, experiments on rare isotopes also require low-background conditions. Ongoing developments that aim to deal with beam-related sources of background are presented. ispartof: Nuclear Instruments & Methods In Physics Research Section B-Beam Interactions With Materials And Atoms vol:463 pages:398-402 ispartof: location:SWITZERLAND, CERN, Geneva status: published

research product

First demonstration of Doppler-free 2-photon in-source laser spectroscopy at the ISOLDE-RILIS

Abstract Collinear Doppler-free 2-photon resonance ionization has been applied inside a hot cavity laser ion source environment at CERN-ISOLDE. An injection-seeded Ti:sapphire ring laser was used to generate light pulses with a Fourier-limited linewidth for high-resolution spectroscopy. Using a molybdenum foil as a reflective surface positioned at the end of the target transfer line, rubidium was successfully ionized inside the hot cavity. The results are presented alongside previously obtained data from measurements performed at the RISIKO mass separator at Mainz University, where collinear and perpendicular ionization geometries were tested inside an RFQ ion guide. This work is a pre-curs…

research product

Laser and decay spectroscopy of the short-lived isotope Fr214 in the vicinity of the N=126 shell closure

research product

Measurement and microscopic description of odd-even staggering of charge radii of exotic copper isotopes

Isotopes with an odd number of neutrons are usually slightly smaller in size than their even-neutron neighbours. In charge radii of short-lived copper isotopes, a reduction of this effect is observed when the neutron number approaches fifty. The mesoscopic nature of the atomic nucleus gives rise to a wide array of macroscopic and microscopic phenomena. The size of the nucleus is a window into this duality: while the charge radii globally scale as $A^{1/3}$, their evolution across isotopic chains reveals unanticipated structural phenomena [1-3]. The most ubiquitous of these is perhaps the Odd-Even Staggering (OES) [4]: isotopes with an odd number of neutrons are usually smaller in size than …

research product

Precision measurements of the charge radii of potassium isotopes

International audience; Precision nuclear charge radii measurements in the light-mass region are essential for understanding the evolution of nuclear structure, but their measurement represents a great challenge for experimental techniques. At the Collinear Resonance Ionization Spectroscopy (CRIS) setup at ISOLDE-CERN, a laser frequency calibration and monitoring system was installed and commissioned through the hyperfine spectra measurement of $^{38–47}$K. It allowed for the extraction of the hyperfine parameters and isotope shifts with better than 1 MHz precision. These results are in excellent agreement with available literature values and they demonstrate the suitability of the CRIS tec…

research product

Quadrupole moment of Fr 203

The spectroscopic electric quadrupole moment of the neutron-deficient francium isotope 203Fr was measured by using high-resolution collinear resonance ionization spectroscopy (CRIS) at the CERN Isotope Separation On-Line Device (ISOLDE)facility. A remeasurement of the 207Fr quadrupole momentwas also performed, resulting in a departure from the established literature value. A sudden increase in magnitude of the 203Fr quadrupole moment, with respect to the general trend in the region, points to an onset of static deformation at N =116 in the 87Fr isotopic chain. Calculation of the static and total deformation parameters show that the increase in static deformation only cannot account for the o…

research product

Continuously tunable diamond Raman laser for resonance laser ionization.

We demonstrate a highly efficient, tunable, ∼5 GHz line- width diamond Raman laser operating at 479 nm. The diamond laser was pumped by a wavelength-tunable intra- cavity frequency-doubled titanium sapphire (Ti:Sapphire) laser operating at around 450 nm, at a repetition rate of 10 kHz with a pulse duration of 50 ns. The Raman reso- nator produced a continuously tunable output with high stability, high conversion efficiency (28%), and beam quality (M$^{2}$ <1.2). We also demonstrate that the linewidth and tunability of the pump laser is directly transferred to the Stokes output. Our results show that diamond Raman lasers offer great potential for spectroscopic applications, such as resonance…

research product

Nuclear moments put a new spin on the structure of 131In

Abstract In spite of the high-density and strongly correlated nature of the atomic nucleus, experimental and theoretical evidence suggests that around particular 'magic' numbers of nucleons, nuclear properties are governed by a single unpaired nucleon1,2. A microscopic understanding of the extent of this behaviour and its evolution in neutron-rich nuclei remains an open question in nuclear physics 3-5. A textbook example is the electromagnetic moments of indium (Z = 49) 6, which are dominated by a hole with respect to the proton magic number Z = 50 nucleus. They exhibit a remarkably constant behaviour over a large range of odd-mass isotopes, previously interpreted as pure "single-particle b…

research product

Tin resonance-ionization schemes for atomic- And nuclear-structure studies

This paper presents high-precision spectroscopic measurements of atomic tin using five different resonance-ionization schemes performed with the collinear resonance-ionization spectroscopy technique. Isotope shifts were measured for the stable tin isotopes from the $5{s}^{2}5{p}^{2}\phantom{\rule{0.28em}{0ex}}^{3}{P}_{0,1,2}$ and ${}^{1}{S}_{0}$ to the $5{s}^{2}5p6s\phantom{\rule{0.28em}{0ex}}^{1}{P}_{1},^{3}{P}_{1,2}$ and $5{s}^{2}5p7s{\phantom{\rule{0.28em}{0ex}}}^{1}{P}_{1}$ atomic levels. The magnetic dipole hyperfine constants ${A}_{\mathrm{hf}}$ have been extracted for six atomic levels with electron angular momentum $Jg0$ from the hyperfine structures of nuclear spin $I=1/2$ tin isot…

research product

The electron affinity of astatine

One of the most important properties influencing the chemical behavior of an element is the electron affinity (EA). Among the remaining elements with unknown EA is astatine, where one of its isotopes, 211At, is remarkably well suited for targeted radionuclide therapy of cancer. With the At− anion being involved in many aspects of current astatine labeling protocols, the knowledge of the electron affinity of this element is of prime importance. Here we report the measured value of the EA of astatine to be 2.41578(7) eV. This result is compared to state-of-the-art relativistic quantum mechanical calculations that incorporate both the Breit and the quantum electrodynamics (QED) corrections and…

research product

High-resolution laser spectroscopy with the Collinear Resonance Ionisation Spectroscopy (CRIS) experiment at CERN-ISOLDE

The Collinear Resonance Ionisation Spectroscopy (CRIS) experiment at CERN has achieved high-resolution resonance ionisation laser spectroscopy with a full width at half maximum linewidth of 20(1) MHz for 219;221Fr, and has measured isotopes as short lived as 5 ms with 214Fr. This development allows for greater precision in the study of hyperfine structures and isotope shifts, as well as a higher selectivity of singleisotope, even single-isomer, beams. These achievements are linked with the development of a new laser laboratory and new data-acquisition systems. publisher: Elsevier articletitle: High-resolution laser spectroscopy with the Collinear Resonance Ionisation Spectroscopy (CRIS) exp…

research product

Analytic response relativistic coupled-cluster theory: the first application to indium isotope shifts

With increasing demand for accurate calculation of isotope shifts of atomic systems for fundamental and nuclear structure research, an analytic energy derivative approach is presented in the relativistic coupled-cluster theory framework to determine the atomic field shift and mass shift factors. This approach allows the determination of expectation values of atomic operators, overcoming fundamental problems that are present in existing atomic physics methods, i.e. it satisfies the Hellmann-Feynman theorem, does not involve any non-terminating series, and is free from choice of any perturbative parameter. As a proof of concept, the developed analytic response relativistic coupled-cluster the…

research product

Dipole and quadrupole moments of Cu73–78 as a test of the robustness of the Z=28 shell closure near Ni78

Nuclear spins and precise values of the magnetic dipole and electric quadrupole moments of the ground-states of neutron-rich $^{76-78}$Cu isotopes were measured using the Collinear Resonance Ionization Spectroscopy (CRIS) experiment at ISOLDE, CERN. The nuclear moments of the less exotic $^{73,75}$Cu isotopes were re-measured with similar precision, yielding values that are consistent with earlier measurements. The moments of the odd-odd isotopes, and $^{78}_{29}$Cu ($N=49$) in particular, are used to investigate excitations of the assumed doubly-magic $^{78}$Ni core through comparisons with large-scale shell-model calculations. Despite the narrowing of the $Z=28$ shell gap between $N\sim45…

research product

Radium ionization scheme development: The first observed autoionizing states and optical pumping effects in the hot cavity environment

© 2018 The Authors This paper reports on resonance ionization scheme development for the production of exotic radium ion beams with the Resonance Ionization Laser Ion Source (RILIS) of the CERN-ISOLDE radioactive ion beam facility. During the study, autoionizing states of atomic radium were observed for the first time. Three ionization schemes were identified, originating from the 7s2 1S0 atomic ground state. The optimal of the identified ionization schemes involves five atomic transitions, four of which are induced by three resonantly tuned lasers. This is the first hot cavity RILIS ionization scheme to employ optical pumping effects. The details of the spectroscopic studies are described …

research product

Charge radii of exotic potassium isotopes challenge nuclear theory and the magic character of N = 32

Nuclear charge radii are sensitive probes of different aspects of the nucleon-nucleon interaction and the bulk properties of nuclear matter; thus, they provide a stringent test and challenge for nuclear theory. The calcium region has been of particular interest, as experimental evidence has suggested a new magic number at $N = 32$ [1-3], while the unexpectedly large increases in the charge radii [4,5] open new questions about the evolution of nuclear size in neutron-rich systems. By combining the collinear resonance ionization spectroscopy method with $\beta$-decay detection, we were able to extend the charge radii measurement of potassium ($Z =19$) isotopes up to the exotic $^{52}$K ($t_{1…

research product

Enhancing the extraction of laser-ionized beams from an arc discharge ion source volume

© 2018 The Author(s) The Versatile Arc Discharge and Laser Ion Source (VADLIS) is a recently established ion source for the CERN-ISOLDE radioactive ion beam facility. It offers either electron-impact ionization (VADIS-mode) or resonance laser ionization (RILIS-mode). The choice of operating mode depends on the element of interest or the required beam purity. Particle-in-cell simulations using the VSim software show that the ion extraction efficiency of the VADLIS in RILIS-mode can be improved if it is equipped with an insulated extractor plate, to which an optimal voltage can be applied. This enables optimization of the RILIS-mode ion extraction independently of the electron density. Experi…

research product

Combined high-resolution laser spectroscopy and nuclear decay spectroscopy for the study of the low-lying states inFr206,At202, andBi198

High-resolution laser spectroscopy was performed on $^{206}\mathrm{Fr}$ with the collinear resonance ionization spectroscopy (CRIS) experiment at CERN-ISOLDE. The hyperfine structure and isotope shift of the ground, first isomeric and second isomeric states were measured. The hyperfine components were unambiguously assigned to each nuclear state by means of laser-assisted nuclear decay spectroscopy. The branching ratios in the $\ensuremath{\alpha}$ decay of $^{206}\mathrm{Fr}$ and $^{202}\mathrm{At}$ were also measured for the first time with isomerically purified beams. The extracted hindrance factors allow determination of the spin of the ground, first isomeric, and second isomeric states…

research product

Use of a Continuous Wave Laser and Pockels Cell for Sensitive High-Resolution Collinear Resonance Ionization Spectroscopy

New technical developments have led to a 2 orders of magnitude improvement of the resolution of the collinear resonance ionization spectroscopy (CRIS) experiment at ISOLDE, CERN, without sacrificing the high efficiency of the CRIS technique. Experimental linewidths of 20(1) MHz were obtained on radioactive beams of francium, allowing us for the first time to determine the electric quadrupole moment of the short lived [t1/2=22.0(5) ms]219Fr Qs=−1.21(2) eb, which would not have been possible without the advantages offered by the new method. This method relies on a continuous-wave laser and an external Pockels cell to produce narrow-band light pulses, required to reach the high resolution in t…

research product

Erratum to ‘Simulation of the relative atomic populations of elements 1≤Z ≤89 following charge exchange tested with collinear resonance ionization spectroscopy of indium’ [Spectrochimica Acta Part B 153 (2019) 61–83]

research product

High-Precision Multiphoton Ionization of Accelerated Laser-Ablated Species

We demonstrate that the pulsed-time structure and high-peak ion intensity provided by the laser-ablation process can be directly combined with the high resolution, high efficiency, and low background offered by collinear resonance ionization spectroscopy. This simple, versatile, and powerful method offers new and unique opportunities for high-precision studies of atomic and molecular structures, impacting fundamental and applied physics research. We show that even for ion beams possessing a relatively large energy spread, high-resolution hyperfine-structure measurements can be achieved by correcting the observed line shapes with the time-of-flight information of the resonantly ionized ions.…

research product

Spectroscopy of short-lived radioactive molecules

Molecular spectroscopy offers opportunities for the exploration of the fundamental laws of nature and the search for new particle physics beyond the standard model1–4. Radioactive molecules—in which one or more of the atoms possesses a radioactive nucleus—can contain heavy and deformed nuclei, offering high sensitivity for investigating parity- and time-reversal-violation effects5,6. Radium monofluoride, RaF, is of particular interest because it is predicted to have an electronic structure appropriate for laser cooling6, thus paving the way for its use in high-precision spectroscopic studies. Furthermore, the effects of symmetry-violating nuclear moments are strongly enhanced5,7–9 in molecu…

research product

Optimising the Collinear Resonance Ionisation Spectroscopy (CRIS) experiment at CERN-ISOLDE

© 2019 The CRIS experiment at CERN-ISOLDE is a dedicated laser spectroscopy setup for high-resolution hyperfine structure measurements of nuclear observables of exotic isotopes. Between 2015 and 2018 developments have been made to improve the background suppression, laser-atom overlap and automation of the beamline. Furthermore, a new ion source setup has been developed for offline studies. Here we present the latest technical developments and future perspectives for the experiment. ispartof: Nuclear Instruments & Methods In Physics Research Section B-Beam Interactions With Materials And Atoms vol:463 pages:384-389 ispartof: location:SWITZERLAND, CERN, Geneva status: published

research product

Simulation of the relative atomic populations of elements 1 ≤ Z ≤89 following charge exchange tested with collinear resonance ionization spectroscopy of indium

© 2019 The Authors Calculations of the neutralisation cross-section and relative population of atomic states were performed for ions beams (1 ≤ Z ≤ 89) at 5 and 40 keV incident on free sodium and potassium atoms. To test the validity of the calculations, the population distribution of indium ions incident on a vapour of sodium was measured at an intermediate energy of 20 keV. The relative populations of the 5s 2 5p 2 P 1/2 and 5s 2 5p 2 P 3/2 states in indium were measured using collinear resonance ionization spectroscopy and found to be consistent with the calculations. Charge exchange contributions to high-resolution lineshapes were also investigated and found to be reproduced by the calc…

research product

In-source laser spectroscopy of dysprosium isotopes at the ISOLDE-RILIS

A number of radiogenically produced dysprosium isotopes have been studied by in-source laser spectroscopy at ISOLDE using the Resonance Ionization Laser Ion Source (RILIS). Isotope shifts were measured relative to $^{152}$Dy in the 4 f$^{ 10}$6s$^{2}$ $^5$I$_8$ (gs) $\rightarrow$ 4 f$^{ 10}$6s6p (8,1)$^8_o$ (418.8 nm$_{vac}$) resonance transition. The electronic factor, F, and mass shift factor, M, were extracted and used for determining the changes in mean-squared charge radii for $^{145m}$Dy and $^{147m}$Dy for the first time. A number of radiogenically produced dysprosium isotopes have been studied by in-source laser spectroscopy at ISOLDE using the Resonance Ionization Laser Ion Source (…

research product

Alternative approach to populate and study the $^{229}Th$ nuclear clock isomer

A new approach to observe the radiative decay of the $^{229}$Th nuclear isomer, and to determine its energy and radiative lifetime, is presented. Situated at a uniquely low excitation energy, this nuclear state might be a key ingredient for the development of a nuclear clock, a nuclear laser and the search for time variations of the fundamental constants. The isomer's $\gamma$ decay towards the ground state will be studied with a high-resolution VUV spectrometer after its production by the $\beta$ decay of $^{229}$Ac. The novel production method presents a number of advantages asserting its competitive nature with respect to the commonly used $^{233}$U $\alpha$-decay recoil source. In this …

research product