Hyperspectral UAV-Imagery and photogrammetric canopy height model in estimating forest stand variables
Remote sensing using unmanned aerial vehicle (UAV) -borne sensors is currently a highly interesting approach for the estimation of forest characteristics. 3D remote sensing data from airborne laser scanning or digital stereo photogrammetry enable highly accurate estimation of forest variables related to the volume of growing stock and dimension of the trees, whereas recognition of tree species dominance and proportion of different tree species has been a major complication in remote sensing-based estimation of stand variables. In this study the use of UAV-borne hyperspectral imagery was examined in combination with a high-resolution photogrammetric canopy height model in estimating forest v…
Fotogrammetrisen 3D-latvusmallin ja hyperspektriaineiston käyttö aluetason puustotulkinnassa
Seloste artikkelista Tuominen S., Balazs A., Honkavaara E., Polonen I., Saari H., Hakala T., Viljanen N. (2017). Hyperspectral UAV-imagery and photogrammetric canopy height model in estimating forest stand variables. Silva Fennica vol. 51 no. 5 article id 7721. https://doi. org/10.14214/sf.7721
Assessment of Classifiers and Remote Sensing Features of Hyperspectral Imagery and Stereo-Photogrammetric Point Clouds for Recognition of Tree Species in a Forest Area of High Species Diversity
Recognition of tree species and geospatial information on tree species composition is essential for forest management. In this study, tree species recognition was examined using hyperspectral imagery from visible to near-infrared (VNIR) and short-wave infrared (SWIR) camera sensors in combination with a 3D photogrammetric canopy surface model based on RGB camera stereo-imagery. An arboretum with a diverse selection of 26 tree species from 14 genera was used as a test area. Aerial hyperspectral imagery and high spatial resolution photogrammetric color imagery were acquired from the test area using unmanned aerial vehicle (UAV) borne sensors. Hyperspectral imagery was processed to calibrated …
Unmanned aerial system imagery and photogrammetric canopy height data in area-based estimation of forest variables
In this paper we examine the feasibility of data from unmanned aerial vehicle (UAV)-borne aerial imagery in stand-level forest inventory. As airborne sensor platforms, UAVs offer advantages cost and flexibility over traditional manned aircraft in forest remote sensing applications in small areas, but they lack range and endurance in larger areas. On the other hand, advances in the processing of digital stereo photography make it possible to produce three-dimensional (3D) forest canopy data on the basis of images acquired using simple lightweight digital camera sensors. In this study, an aerial image orthomosaic and 3D photogrammetric canopy height data were derived from the images acquired …
Tree species recognition in species rich area using UAV-borne hyperspectral imagery and stereo-photogrammetric point cloud
Abstract. Recognition of tree species and geospatial information of tree species composition is essential for forest management. In this study we test tree species recognition using hyperspectral imagery from VNIR and SWIR camera sensors in combination with 3D photogrammetric canopy surface model based on RGB camera stereo-imagery. An arboretum forest with a high number of tree species was used as a test area. The imagery was acquired from the test area using UAV-borne cameras. Hyperspectral imagery was calibrated for providing a radiometrically corrected reflectance mosaic, which was tested along with the original uncalibrated imagery. Alternative estimators were tested for predicting tree…