0000000000525708

AUTHOR

Felix Weber

showing 4 related works from this author

Terbium Medical Radioisotope Production: Laser Resonance Ionization Scheme Development

2021

Terbium (Tb) is a promising element for the theranostic approach in nuclear medicine. The new CERN-MEDICIS facility aims for production of its medical radioisotopes to support related R&D projects in biomedicine. The use of laser resonance ionization is essential to provide radioisotopic yields of highest quantity and quality, specifically regarding purity. This paper presents the results of preparation and characterization of a suitable two-step laser resonance ionization process for Tb. By resonance excitation via an auto-ionizing level, the high ionization efficiency of 53% was achieved. To simulate realistic production conditions for Tb radioisotopes, the influence of a surplus of Gd at…

Medicine (General)theranosticsMaterials scienceCERN-MEDICISIon beam530 PhysicsGadolinium610 Medizinchemistry.chemical_elementTerbiumTERBIUMSURFACE PROPERTYIsotope separationlaw.inventionGADOLINIUMR5-920COMPARATIVE STUDYlawIonization610 Medical sciencesLASER RESONANCE IONIZATIONSAPPHIRE LASER [TI]ARTICLERADIOCHEMISTRYisotope separationTANTALUMOriginal ResearchTHERANOSTICSTi:Sapphire laserRISIKO MASS SEPARATORterbiumATOMIC SPECTROMETRYRadiochemistryTi:sapphire laserGeneral Medicine530 PhysikCharacterization (materials science)CONTROLLED STUDYchemistryRISIKO mass separatorION CURRENTMedicineISOTOPE SEPARATIONIONIZATIONAtomic ratiolaser resonance ionizationgadolinium
researchProduct

Detection of the Lowest-Lying Odd-Parity Atomic Levels in Actinium

2020

Two lowest-energy odd-parity atomic levels of actinium, 7s27pP21/2o, 7s27pP23/2o, were observed via two-step resonant laser-ionization spectroscopy and their respective energies were measured to be 7477.36(4) and 12 276.59(2) cm-1. The lifetimes of these states were determined as 668(11) and 255(7) ns, respectively. In addition, we observed the effect of the hyperfine structure on the line for the transition to P23/2o. These properties were calculated using a hybrid approach that combines configuration interaction and coupled-cluster methods, in good agreement with the experiment. The data are of relevance for understanding the complex atomic spectra of actinides and for developing efficien…

FUNDAMENTAL PHYSICSGeneral Physics and Astronomychemistry.chemical_elementHYPERFINE STRUCTURE01 natural sciences7. Clean energyATOMIC SPECTROSCOPYLASER IONIZATION SPECTROSCOPYATOMSCOMPLEX ATOMIC SPECTRALaser coolingIonization0103 physical sciences010306 general physicsSpectroscopyNUMERICAL METHODSHyperfine structurePhysicsHYBRID APPROACHATOM LASERSActinideConfiguration interactionCOUPLED-CLUSTER METHODSACTINIUMMEDICAL ISOTOPE PRODUCTIONActiniumchemistryLASER COOLINGIONIZATIONProduction (computer science)Atomic physicsCONFIGURATION INTERACTIONS
researchProduct

MELISSA: Laser ion source setup at CERN-MEDICIS facility. Blueprint

2019

The Resonance Ionization Laser Ion Source (RILIS) has become an essential feature of many radioactive ion beam facilities worldwide since it offers an unmatched combination of efficiency and selectivity in the production of ion beams of many different chemical elements. In 2019, the laser ion source setup MELISSA is going to be established at the CERN-MEDICIS facility, based on the experience of the workgroup LARISSA of the University Mainz and CERN ISOLDE RILIS team. The purpose is to enhance the capability of the radioactive ion beam supply for end users by optimizing the yield and the purity of the final product. In this article, the blueprint of the laser ion source, as well as the key …

Nuclear and High Energy PhysicsEngineeringTechnologyCERN-MEDICISIon beamRESONANCE IONIZATION SPECTROSCOPYNuclear engineeringPhysics Atomic Molecular & ChemicalNUCLEAR MEDICINE01 natural sciencesISOLDElaw.inventionIonRADIOACTIVITYlawION BEAMSLASER RESONANCE IONIZATION0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]010306 general physicsNuclear Science & TechnologyInstrumentationInstruments & InstrumentationSAPPHIRE [TI]ComputingMilieux_MISCELLANEOUSLarge Hadron ColliderScience & TechnologyMELISSA010308 nuclear & particles physicsbusiness.industryPhysicsION SOURCESLaserLANTHANIDESIon sourcePhysics NuclearResonance ionizationPhysical SciencesISOTOPE SEPARATIONIONIZATIONRADIOACTIVE ELEMENTSbusinessRARE EARTH ELEMENTSSAPPHIRE
researchProduct

Detection of missing low-lying atomic states in actinium

2020

Two lowest-energy odd-parity atomic levels of actinium, 7s^27p 2P^o_1/2, 7s^27p 2P^o_3/2, were observed via two-step resonant laser-ionization spectroscopy and their respective energies were measured to be 7477.36(4) cm^-1 and 12 276.59(2) cm^-1. The lifetimes of these states were determined as 668(11) ns and 255(7) ns, respectively. In addition, these properties were calculated using a hybrid approach that combines configuration interaction and coupled-cluster methods in good agreement. The data are of relevance for understanding the complex atomic spectra of actinides and for developing efficient laser-cooling and ionization schemes for actinium, with possible applications for high-purity…

Quantum PhysicsAtomic Physics (physics.atom-ph)FOS: Physical sciencesQuantum Physics (quant-ph)Physics - Atomic Physics
researchProduct