0000000000526073

AUTHOR

Jeffrey J. Langford

showing 3 related works from this author

Improved Bounds for Hermite–Hadamard Inequalities in Higher Dimensions

2019

Let $\Omega \subset \mathbb{R}^n$ be a convex domain and let $f:\Omega \rightarrow \mathbb{R}$ be a positive, subharmonic function (i.e. $\Delta f \geq 0$). Then $$ \frac{1}{|\Omega|} \int_{\Omega}{f dx} \leq \frac{c_n}{ |\partial \Omega| } \int_{\partial \Omega}{ f d\sigma},$$ where $c_n \leq 2n^{3/2}$. This inequality was previously only known for convex functions with a much larger constant. We also show that the optimal constant satisfies $c_n \geq n-1$. As a byproduct, we establish a sharp geometric inequality for two convex domains where one contains the other $ \Omega_2 \subset \Omega_1 \subset \mathbb{R}^n$: $$ \frac{|\partial \Omega_1|}{|\Omega_1|} \frac{| \Omega_2|}{|\partial \Ome…

Pure mathematicsInequalitymedia_common.quotation_subject01 natural sciencesConvexitysymbols.namesakeMathematics - Metric GeometrySettore MAT/05 - Analisi MatematicaHadamard transformHermite–Hadamard inequality0103 physical sciencesClassical Analysis and ODEs (math.CA)FOS: Mathematics[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP]Hermite-Hadamard inequality subharmonic functions convexity.0101 mathematicsComputingMilieux_MISCELLANEOUSsubharmonic functionsmedia_commonMathematicsSubharmonic functionHermite polynomialsconvexity010102 general mathematicsMetric Geometry (math.MG)Functional Analysis (math.FA)Mathematics - Functional AnalysisMSC : 26B25 28A75 31A05 31B05 35B50Mathematics::LogicHermite-Hadamard inequalityDifferential geometryMathematics - Classical Analysis and ODEsFourier analysissymbols010307 mathematical physicsGeometry and TopologyThe Journal of Geometric Analysis
researchProduct

Estimates for Sums of Eigenvalues of the Free Plate via the Fourier Transform

2017

Using the Fourier transform, we obtain upper bounds for sums of eigenvalues of the free plate.

Tension (physics)Applied MathematicsSums of eigenvaluesMathematical analysisFree plate35P15 35J40 74K20General MedicineMathematics::Spectral TheoryDomain (mathematical analysis)Ambient spaceMathematics - Spectral TheoryPhysics::Fluid Dynamicssymbols.namesakeFourier transformVolume (thermodynamics)Dimension (vector space)Bilaplace operatorSettore MAT/05 - Analisi MatematicasymbolsFOS: MathematicsSpectral Theory (math.SP)AnalysisEigenvalues and eigenvectorsMathematics
researchProduct

Sharp Poincaré inequalities in a class of non-convex sets

2018

Let $gamma$ be a smooth, non-closed, simple curve whose image is symmetric with respect to the $y$-axis, and let $D$ be a planar domain consisting of the points on one side of $gamma$, within a suitable distance $delta$ of $gamma$. Denote by $mu_1^{odd}(D)$ the smallest nontrivial Neumann eigenvalue having a corresponding eigenfunction that is odd with respect to the $y$-axis. If $gamma$ satisfies some simple geometric conditions, then $mu_1^{odd}(D)$ can be sharply estimated from below in terms of the length of $gamma$ , its curvature, and $delta$. Moreover, we give explicit conditions on $delta$ that ensure $mu_1^{odd}(D)=mu_1(D)$. Finally, we can extend our bound on $mu_1^{odd}(D)$ to a …

Pure mathematicsClass (set theory)non-convex domainsInequalitymedia_common.quotation_subjectRegular polygonStatistical and Nonlinear Physicssymbols.namesakeSettore MAT/05 - Analisi MatematicaPoincaré conjecturesymbolsNeumann eigenvalueGeometry and Topologylower boundMathematical Physicsmedia_commonMathematics
researchProduct