0000000000526082

AUTHOR

Luca Di Luzio

Seesaw Scale in the Minimal Renormalizable SO(10) Grand Unification

Simple SO(10) Higgs models with the adjoint representation triggering the grand-unified symmetry breaking, discarded a long ago due to inherent tree-level tachyonic instabilities in the physically interesting scenarios, have been recently brought back to life by quantum effects. In this work we focus on the variant with 45_H+126_H in the Higgs sector and show that there are several regions in the parameter space of this model that can support stable unifying configurations with the B-L breaking scale as high as 10^14 GeV, well above the previous generic estimates based on the minimal survival hypothesis. This admits for a renormalizable implementation of the canonical seesaw and makes the s…

research product

Maximal Flavour Violation: a Cabibbo mechanism for leptoquarks

We propose a mechanism that allows for sizeable flavour violation in quark-lepton currents, while suppressing flavour changing neutral currents in quark-quark and lepton-lepton sectors. The mechanism is applied to the recently proposed 4321 renormalizable model, which can accommodate the current experimental anomalies in $B$-meson decays, both in charged and neutral currents, while remaining consistent with all other indirect flavour and electroweak precision measurements and direct searches at high-$p_T$. To support this claim, we present an exhaustive phenomenological survey of this fully calculable UV complete model and highlight the rich complementarity between indirect and direct searc…

research product

Minimal Flipped SO(10) x U(1) Supersymmetric Higgs Model

We investigate the conditions on the Higgs sector that allow supersymmetric SO(10) grand unified theories (GUT) to break spontaneously to the standard electroweak model (SM) at the renormalizable level. If one considers Higgs representations of dimension up to the adjoint, a supersymmetric standard model vacuum requires in most cases the presence of non-renormalizable (NR) operators. The active role of Planck induced NR operators in the breaking of the gauge symmetry introduces a hierarchy in the mass spectrum at the GUT scale that may be an issue for gauge unification and proton decay. We show that the minimal Higgs scenario that allows for a renormalizable breaking to the SM is obtained b…

research product

Towards a New Minimal SO(10) Unification

We argue that non-supersymmetric SO(10) models based on a renormalizable Higgs sector in which spontaneous symmetry breaking is triggered by the VEVs of a 45-dimensional adjoint and a 126-dimensional tensor representations can provide a potentially realistic yet relatively simple framework for a future robust estimate of the proton lifetime. Following closely the work Phys.Rev.D85, 095014 (2012), arXiv: 1202.0807 [hep-ph] we comment on the gauge unification constraints on the B-L breaking scale and show that there are several regions in the parameter space of the minimal model where the seesaw scale in the phenomenologically favoured ballpark of around 10^13-14 GeV is consistently supported.

research product

Structure and prospects of the simplest SO(10) GUTs

We recapitulate the latest results on the class of the simplest SO(10) grand unified models in which the GUT-scale symmetry breaking is triggered by an adjoint Higgs representation. We argue that the minimal survival approximation traditionally used in the GUT- and seesaw-scale estimates tends to be blind to very interesting parts of the parameter space in which some of the intermediate-scale states necessary for non-supersymmetric unification of the SM gauge couplings can be as light as to leave their imprints in the TeV domain. The stringent minimal-survival-based estimates of the B-L scale are shown to be relaxed by as much as four orders of magnitude, thus admitting for a consistent imp…

research product