0000000000526105

AUTHOR

Peng Han

0000-0002-9741-6277

showing 2 related works from this author

Size-dependent electron transfer from atomically defined nanographenes to metal oxide nanoparticles.

2020

Atomically defined nanographenes (NGs) feature size-dependent energy gaps induced by, and tuneable through, quantum confinement. Their energy-tunability and robustness make NGs appealing candidates as active elements in sensitized geometries, where NGs functionalize a metal oxide (MO) film with large-area-to-volume ratio. Despite the prominent relevance of NG/MO interfaces for developing novel architectures for solar energy conversion, to date, little information is available regarding the fundamentals of electron transfer (ET) processes taking place from NG donors to MO acceptors. Here, we analyze the interplay between the size of atomically precise NGs and ET dynamics at NG/MO interfaces.…

Electron transferchemistry.chemical_compoundMaterials sciencechemistryChemical physicsQuantum dotSize dependentOxideSolar energy conversionGeneral Materials ScienceMetal oxide nanoparticlesOverpotentialAcceptorNanoscale
researchProduct

Chemisorption of Atomically Precise 42-Carbon Graphene Quantum Dots on Metal Oxide Films Greatly Accelerates Interfacial Electron Transfer

2019

Graphene quantum dots (GQDs) are emerging as environmentally friendly, low-cost, and highly tunable building blocks in solar energy conversion architectures, such as solar (fuel) cells. Specifically, GQDs constitute a promising alternative for organometallic dyes in sensitized oxide systems. Current sensitized solar cells employing atomically precise GQDs are based on physisorbed sensitizers, with typically limited efficiencies. Chemisorption has been pointed out as a solution to boost photoconversion efficiencies, by allowing improved control over sensitizer surface coverage and sensitizer-oxide coupling strength. Here, employing time-resolved THz spectroscopy, we demonstrate that chemisor…

LetterMaterials scienceGrapheneOxidechemistry.chemical_elementNanotechnology02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical scienceslaw.inventionchemistry.chemical_compoundElectron transferchemistryQuantum dotlawChemisorptionSurface modificationGeneral Materials SciencePhysical and Theoretical Chemistry0210 nano-technologyMesoporous materialCarbonThe Journal of Physical Chemistry Letters
researchProduct