0000000000526240
AUTHOR
Rosalba Saija
Ultrastrong Coupling of Plasmons and Excitons in a Nanoshell
The strong coupling regime of hybrid plasmonic-molecular systems is a subject of great interest for its potential to control and engineer light-matter interactions at the nanoscale. Recently, the so-called ultrastrong coupling regime, which is achieved when the light-matter coupling rate reaches a considerable fraction of the emitter transition frequency, has been realized in semiconductor and superconducting systems and in organic molecules embedded in planar microcavities or coupled to surface plasmons. Here we explore the possibility to achieve this regime of light-matter interaction at nanoscale dimensions. We demonstrate by accurate scattering calculations that this regime can be reach…
Biomineral Amorphous Lasers through Light-Scattering Surfaces Assembled by Electrospun Fiber Templates
New materials aim at exploiting the great control of living organisms over molecular architectures and minerals. Optical biomimetics has been widely developed by microengineering, leading to photonic components with order resembling those found in plants and animals. These systems, however, are realized by complicated and adverse processes. Here we show how biomineralization might enable the one-step generation of components for amorphous photonics, in which light is made to travel through disordered scattering systems, and particularly of active devices such as random lasers, by using electrospun fiber templates. The amount of bio-enzymatically produced silica is related to light-scatterin…