0000000000527857
AUTHOR
V.t. Shvets
Electron transport process in simple amorphous metals at moderately low temperatures
Abstract The dependence of electroresistivity ϱ( T ) and electron contribution to thermoconductivity ϰ( T ) of simple amorphous metals is investigated. Calculation of kinetic coefficients is carried out in the nearly free electron approximation (Ziman theory). The form-factor was calculated in the quasiphonon model. In this approximation on the short wavelength part of “dispersion curve” a minimum exists (“roton-like minimum”). It is shown that at moderately low temperatures 10 K ≤ T ≤ 100 K the ratio ϱ(T) − ϱ(0) T 2 has a maximum and the T 2 [ ϰ ( T ) − ϰ (0)] is minimal in this temperature region. Such “anomaly” in the temperature dependence of the kinetic coefficient is due to additional…
Electrical resistivity of amorphous simple metals at moderately low temperatures
Abstract The dependence of electrical resistivity ρ ( T ) on temperature T in a region of moderate temperatures is considered for amorphous simple metals. It is shown within the Faber–Ziman theory that the ratio [ ρ ( T )− ρ (0)]/ T 2 has a maximum in the temperature region 10 K⩽ T ⩽100 K The theory is illustrated by numerical calculations performed for hard-sphere models of amorphous Mg and Zn.