A Review of Kernel Methods in ECG Signal Classification
Kernel methods have been shown to be effective in the analysis of electrocardiogram (ECG) signals. These techniques provide a consistent and well-founded theoretical framework for developing nonlinear algorithms. Kernel methods exhibit useful properties when applied to challenging design scenarios, such as: (1) when dealing with low number of (potentially high dimensional) training samples; (2) in the presence of heterogenous multimodalities; and (3) with different noise sources in the data. These characteristics are particularly appropriate for biomedical signal processing and analysis, and hence, the widespread of these techniques in biomedical signal processing in general, and in ECG dat…