0000000000528825

AUTHOR

ÁNgel M. Fernández

showing 2 related works from this author

Bayesian spatio-temporal approach to identifying fish nurseries by validating persistence areas

2015

Spatial and temporal closures of fish nursery areas to fishing have recently been recognized as useful tools for efficient fisheries management, as they preserve the reproductive potential of populations and increase the recruitment of target species. In order to identify and locate potential nursery areas for spatio-temporal closures, a solid understanding of species− environment relationships is needed, as well as spatial identification of fish nurseries through the application of robust analyses. One way to achieve knowledge of fish nurseries is to analyse the persistence of recruitment hotspots. In this study, we propose the comparison of different spatiotemporal model structures to ass…

0106 biological sciencesMediterranean climatehttp://aims.fao.org/aos/agrovoc/c_28840[SDV]Life Sciences [q-bio]01 natural sciencesMediterranean seaAbundance (ecology)Ecosystem approachEcologybiologyEcologyU10 - Informatique mathématiques et statistiquesinteraction élevage environnementmodèle de distributionMerluccius merlucciushttp://aims.fao.org/aos/agrovoc/c_41529zone de pêcheNursery areasSpatio temporal analysisanalyse bayésienneGeographyGestion des pêchesgestion spatialealevinageFisheries managementFishinganalyse spatiotemporellegestion des ressources naturellesAquatic Science010603 evolutionary biologyhttp://aims.fao.org/aos/agrovoc/c_24026étude comparativeHakeMerluccius merluccius14. Life underwaterhttp://aims.fao.org/aos/agrovoc/c_4699Ecology Evolution Behavior and Systematicshttp://aims.fao.org/aos/agrovoc/c_12399Distribution patternapproche ecosystémiqueÉcologie marinehttp://aims.fao.org/aos/agrovoc/c_4609010604 marine biology & hydrobiologybiology.organism_classificationBiologie marineFisheryThéorie bayésiennehttp://aims.fao.org/aos/agrovoc/c_9000115M40 - Écologie aquatiqueBayesian hierarchical modellingMarine protected areaSpatial fisheries managementNursery areas;Distribution pattern;Ecosystem approach;Spatial fisheries management;Spatio temporal analysis;Bayesian hierarchical modelling;Merluccius merluccius
researchProduct

Fishery-dependent and -independent data lead to consistent estimations of essential habitats

2016

AbstractSpecies mapping is an essential tool for conservation programmes as it provides clear pictures of the distribution of marine resources. However, in fishery ecology, the amount of objective scientific information is limited and data may not always be directly comparable. Information about the distribution of marine species can be derived from two main sources: fishery-independent data (scientific surveys at sea) and fishery-dependent data (collection and sampling by observers in commercial vessels). The aim of this paper is to compare whether these two different sources produce similar, complementary, or different results. We compare them in the specific context of identifying the Es…

0106 biological scienceshttp://aims.fao.org/aos/agrovoc/c_28840Biodiversité et Ecologiehabitatmodélisation spatialehttp://aims.fao.org/aos/agrovoc/c_38371OceanographyGaleus melastomus01 natural sciencesRessource halieutiquehttp://aims.fao.org/aos/agrovoc/c_38127Scyliorhinus caniculamodèle hiérarchiqueSpatial statisticsEcologymodèle de distributionSampling (statistics)Contrast (statistics)Cross-validationModélisation et simulationGeographyHabitatGestion des pêchesModeling and Simulationhttp://aims.fao.org/aos/agrovoc/c_10566http://aims.fao.org/aos/agrovoc/c_3456http://aims.fao.org/aos/agrovoc/c_38117survey designMarine conservationSpecies Distribution ModelsEcology (disciplines)Bayesian probabilityEtmopterus spinaxenquête statistiqueDonnée sur les pêchesmodèle spatiotemporelSede Central IEOContext (language use)Aquatic ScienceDistribution des populationsBayesian hierarchical models010603 evolutionary biologyhttp://aims.fao.org/aos/agrovoc/c_24026elasmobranchsBiodiversity and Ecologyélasmobrancheétude comparativeBayesian hierarchical models;Cross-validation;Species Distribution Models;Spatial statistics;INLA;elasmobranchs ; survey designINLA14. Life underwaterspecies distribution modelsEcology Evolution Behavior and Systematicshttp://aims.fao.org/aos/agrovoc/c_6113collecte des donnéesÉcologie marinehttp://aims.fao.org/aos/agrovoc/c_29788http://aims.fao.org/aos/agrovoc/c_4609010604 marine biology & hydrobiologyGestion et conservation des pêchescross validation[INFO.INFO-MO]Computer Science [cs]/Modeling and Simulationmodèle bayésienFisheryM01 - Pêche et aquaculture - Considérations généraleshttp://aims.fao.org/aos/agrovoc/c_2a75d27eThéorie bayésienneM40 - Écologie aquatiqueSpatial ecologyhttp://aims.fao.org/aos/agrovoc/c_2942[SDE.BE]Environmental Sciences/Biodiversity and Ecologyvalidation croiséeElasmobranchii
researchProduct