0000000000528837

AUTHOR

Ruedi Seiler

0000-0003-3293-6981

Charcoal and stable soil organic matter as indicators of fire frequency, climate and past vegetation in volcanic soils of Mt. Etna, Sicily

Abstract Charcoal fragments in soils are useful to reconstruct past vegetation because the level of preservation is often good enough to determine the tree genus. All forest ecosystems have the potential to burn as a result of naturally occurring or human-induced fires. Forest fires are coupled to climate and are a not-negligible factor of pedogenesis in Mediterranean areas, where they occur frequently. Furthermore, soil organic matter (SOM) is prone to undergo peculiar changes due to forest fires, both in terms of quantity and quality. A soil sequence along an elevational gradient ranging from Mediterranean to subalpine climate zones on slopes of Mt. Etna (Sicily, Italy) was investigated i…

research product

Insensitivity of Tree-Ring Growth to Temperature and Precipitation Sharpens the Puzzle of Enhanced Pre-Eruption NDVI on Mt. Etna (Italy)

On Mt. Etna (Italy), an enhanced Normalized Difference in Vegetation Index (NDVI) signature was detected in the summers of 2001 and 2002 along a distinct line where, in November 2002, a flank eruption subsequently occurred. These observations suggest that pre-eruptive volcanic activity may have enhanced photosynthesis along the future eruptive fissure. If a direct relation between NDVI and future volcanic eruptions could be established, it would provide a straightforward and low-cost method for early detection of upcoming eruptions. However, it is unclear if, or to what extent, the observed enhancement of NDVI can be attributed to volcanic activity prior to the subsequent eruption. We conse…

research product