Interstitial defects in diamond: A quantum mechanical simulation of their EPR constants and vibrational spectra
The local geometry, electronic structure, and vibrational features of three vicinal double interstitial defects in diamond, ICIC, ICIN, and ININ, are investigated and compared with those of three "simple" ⟨100⟩ interstitial defects, ICC, ICN, and INN, previously reported by Salustro et al. [Phys. Chem. Chem. Phys. 20, 16615 (2018)], using a similar quantum mechanical approach based on the B3LYP functional constructed from Gaussian-type basis sets, within a supercell scheme, as implemented in the CRYSTAL code. For the first time, the Fermi contact term and hyperfine coupling tensor B of the four open shell structures, ICIC, ICIN, ICC, and ICN, are evaluated and compared with the available ex…
Nitrogen interstitial defects in silicon. A quantum mechanical investigation of the structural, electronic and vibrational properties
The vibrational features of eight interstitial nitrogen related defects in silicon have been investigated at the first principles quantum mechanical level by using a periodic supercell approach, a hybrid functionals, an all electron Gaussian type basis set and the Crystal code. The list includes defects that will be indicated as Ni (one N atom forming a bridge between two Si atoms), Ni-Ns (one interstitial and one substitutional N atom linked to the same Si atom), Ni-Ni (two Ni defects linked to the same couple of silicon atoms) and Ni-Sii-Ni (two Ni defects linked to the same interstitial silicon atom). Four 〈0 0 1〉 split interstitial (dumbbell) defects have also been considered, in which …
First principles calculations of the vibrational properties of single and dimer F-type centers in corundum crystals
The present paper investigates the F-type centers in α-Al2O3 through their electronic and vibrational properties from first principle calculations using a periodic supercell approach, a hybrid functional, and all-electron Gaussian basis sets as implemented in the CRYSTAL17 code. Single F-type and dimer F2-type centers related to oxygen vacancies in various charge states were considered. The defect-induced vibrational modes were identified and found to appear mainly in the low (up to 300 cm-1) and high (above 700 cm-1) frequency regions, depending on the defect charge. The perturbation introduced by the defects to the thermal nuclear motion in the crystal lattice is discussed in terms of ato…
Vibrational Analysis of Paraelectric–Ferroelectric Transition of LiNbO3: An Ab-Initio Quantum Mechanical Treatment
FSG acknowledges the CINECA award under the ISCRA initiative (HP10BJO47B) for the availability of high-performance computing resources and support.
Interstitial carbon defects in silicon. A quantum mechanical characterization through the infrared and Raman spectra.
The infrared (IR) and Raman spectra of eight substitutional carbon defects in silicon are computed at the quantum mechanical level by using a periodic supercell approach based on hybrid functionals, an all electron Gaussian type basis set and the CRYSTAL code. The single substitutional C s case and its combination with a vacancy (C s V and C s SiV) are considered first. The progressive saturation of the four bonds of a Si atom with C is then examined. The last set of defects consists of a chain of adjacent carbon atoms C s i , with i = 1-3. The simple substitutional case, C s , is the common first member of the three sets. All these defects show important, very characteristic features in th…
Substitutional carbon defects in silicon: A quantum mechanical characterization through the infrared and Raman spectra
EUROfusion Enabling Research Project, Grant/Award Number: ENR‐MFE19.ISSP‐UL‐02; GENCI, Grant/Award Number: 2018‐[A0050810537] (Ph. D'Arco) Access to the HPC resources of CINES/IDRIS/TGCC obtained thanks to the grant 2018-[A0050810537]
Electromechanical Properties of Ba(1–x)SrxTiO3 Perovskite Solid Solutions from First-Principles Calculations
Many thanks to M. Maček-Kržmanc, R. A. Evarestov, D. Gryaznov and D. Fuks for fruitful discussions. This study was supported by the ERA-NET HarvEnPiez project.
The VN2 negatively charged defect in diamond. A quantum mechanical investigation of the EPR response
Abstract The VN 2 − defect in diamond consists of a vacancy surrounded by two substitutional nitrogen atoms, which lower the local symmetry from Td to C2v. Calculations of the doublet ground state geometry, electronic structure, EPR parameters, and IR spectra of this defect are reported along with a preliminary investigation of the observed optical transition. For the most part our results were obtained using a uniform charge compensated supercell approach together with the B3LYP functional and all-electron Gaussian basis sets designed for the properties studied. In particular, the computed hyperfine and quadrupolar EPR parameters for the carbon and nitrogen atoms adjacent to the vacancy ag…
Oxygen and vacancy defects in silicon. A quantum mechanical characterization through the IR and Raman spectra.
The Infrared (IR) and Raman spectra of various defects in silicon, containing both oxygen atoms (in the interstitial position, Oi) and a vacancy, are computed at the quantum mechanical level by using a periodic supercell approach based on a hybrid functional (B3LYP), an all-electron Gaussian-type basis set, and the Crystal code. The first of these defects is VO: the oxygen atom, twofold coordinated, saturates the unpaired electrons of two of the four carbon atoms on first neighbors of the vacancy. The two remaining unpaired electrons on the first neighbors of the vacancy can combine to give a triplet (Sz = 1) or a singlet (Sz = 0) state; both states are investigated for the neutral form of …
Nitrogen substitutional defects in silicon. A quantum mechanical investigation of the structural, electronic and vibrational properties
RD and FSG acknowledges the CINECA award (HP10CTG8YY) under the ISCRA initiative, for the availability of high performance computing resources and support.