0000000000529360

AUTHOR

Thomas Rae

Nucleon matrix elements from lattice QCD with all-mode-averaging and a domain-decomposed solver: An exploratory study

We study the performance of all-mode-averaging (AMA) when used in conjunction with a locally deflated SAP-preconditioned solver, determining how to optimize the local block sizes and number of deflation fields in order to minimize the computational cost for a given level of overall statistical accuracy. We find that AMA enables a reduction of the statistical error on nucleon charges by a factor of around two at the same cost when compared to the standard method. As a demonstration, we compute the axial, scalar and tensor charges of the nucleon in $N_f=2$ lattice QCD with non-perturbatively O(a)-improved Wilson quarks, using O(10,000) measurements to pursue the signal out to source-sink sepa…

research product

Nucleon electromagnetic form factors in two-flavor QCD

We present results for the nucleon electromagnetic form factors, including the momentum transfer dependence and derived quantities (charge radii and magnetic moment). The analysis is performed using O(a) improved Wilson fermions in Nf=2 QCD measured on the CLS ensembles. Particular focus is placed on a systematic evaluation of the influence of excited states in three-point correlation functions, which lead to a biased evaluation, if not accounted for correctly. We argue that the use of summed operator insertions and fit ans\"atze including excited states allow us to suppress and control this effect. We employ a novel method to perform joint chiral and continuum extrapolations, by fitting th…

research product

Excited state systematics in extracting nucleon electromagnetic form factors

We present updated preliminary results for the nucleon electromagnetic form factors for non-perturbatively $\mathcal{O}(a)$ improved Wilson fermions in $N_f=2$ QCD measured on the CLS ensembles. The use of the summed operator insertion method allows us to suppress the influence of excited states in our measurements. A study of the effect that excited state contaminations have on the $Q^2$ dependence of the extracted nucleon form factors may then be made through comparisons of the summation method to standard plateau fits, as well as to excited state fits.

research product

Lattice QCD study of the $H$ dibaryon using hexaquark and two-baryon interpolators

Physical review / D 99(7), 074505 (2019). doi:10.1103/PhysRevD.99.074505

research product

Getting covariantly smeared sources into better shape

The use of covariantly smeared sources in hadronic correlators is a common method of improving the projection onto the ground state. Studying the dependence of the shape of such sources on the gauge field background, we find that localized fluxes of magnetic field can strongly distort the sources. This results in a reduction of the smearing radii that can be reached by iterative smearing prescriptions, in particular as the continuum limit is approached. As a remedy, we propose a novel covariant smearing procedure (“free-form smearing”) enabling the creation of arbitrarily shaped sources, including in particular Gaussians of arbitrary radius, as well as shapes with nodes, such as hydrogenic …

research product

Fitting strategies to extract the axial charge of the nucleon from lattice QCD

We report on a comparison of several fit methods used for the extraction of the nucleon axial charge gA from lattice QCD with two dynamical flavours of O(a) improved Wilson quarks. We use plateau fits, summed operator insertions (the summation method) and a new “midpoint” method to investigate contributions from excited states that affect the determination of gA. We also present a method to perform correlated fits when the standard estimator for the inverse of the covariance matrix becomes unstable.

research product