0000000000529572
AUTHOR
Georg Schwiete
Phenomenology of current-induced skyrmion motion in antiferromagnets
We study current-driven skyrmion motion in uniaxial thin film antiferromagnets in the presence of the Dzyaloshinskii-Moriya interactions and in an external magnetic field. We phenomenologically include relaxation and current-induced torques due to both spin-orbit coupling and spatially inhomogeneous magnetic textures in the equation for the N\'eel vector of the antiferromagnet. Using the collective coordinate approach we apply the theory to a two-dimensional antiferromagnetic skyrmion and estimate the skyrmion velocity under an applied DC electric current.
Thermal Transport and Wiedemann-Franz Law in the Disordered Fermi Liquid
We study thermal transport in the disordered Fermi liquid at low temperatures. Gravitational potentials are used as sources for finding the heat density and its correlation function. For a comprehensive study, we extend the renormalization group (RG) analysis developed for electric transport by including the gravitational potentials into the RG scheme. Our analysis reveals that the Wiedemann-Franz law remains valid even in the presence of quantum corrections caused by the interplay of diffusion modes and the electron electron interaction. In the present scheme this fundamental relation is closely connected with a fixed point in the multi-parametric RG-flow of the gravitational potentials.
Spin transfer torques and spin-dependent transport in a metallic F/AF/N tunneling junction
We study spin-dependent electron transport through a ferromagnetic-antiferromagnetic-normal metal tunneling junction subject to a voltage or temperature bias, in the absence of spin-orbit coupling. We derive microscopic formulas for various types of spin torque acting on the antiferromagnet as well as for charge and spin currents flowing through the junction. The obtained results are applicable in the limit of slow magnetization dynamics. We identify a parameter regime in which an unconventional damping-like torque can become comparable in magnitude to the equivalent of the conventional Slonczewski's torque generalized to antiferromagnets. Moreover, we show that the antiferromagnetic sublat…
Transport in topological insulators with bulk-surface coupling: Interference corrections and conductance fluctuations
Motivated by the experimental difficulty to produce topological insulators (TIs) of the ${\text{Bi}}_{2}{\text{Se}}_{3}$ family with pure surface-state conduction, we study the effect that the bulk can have on the low-temperature transport properties of gated thin TI films. In particular, we focus on interference corrections, namely weak localization (WL) or weak antilocalization (WAL), and conductance fluctuations (CFs) based on an effective low-energy Hamiltonian. Utilizing diagrammatic perturbation theory, we first analyze the bulk and the surface separately and subsequently discuss WL/WAL and CFs when a tunneling-coupling is introduced. We identify the relevant soft diffusion modes of t…
Renormalization group analysis of thermal transport in the disordered Fermi liquid
We present a detailed study of thermal transport in the disordered Fermi liquid with short-range interactions. At temperatures smaller than the impurity scattering rate, i.e., in the diffusive regime, thermal conductivity acquires non-analytic quantum corrections. When these quantum corrections become large at low temperatures, the calculation of thermal conductivity demands a theoretical approach that treats disorder and interactions on an equal footing. In this paper, we develop such an approach by merging Luttinger's idea of using gravitational potentials for the analysis of thermal phenomena with a renormalization group calculation based on the Keldysh nonlinear sigma model. The gravita…
Giant Edelstein effect in Topological-Insulator--Graphene heterostructures
The control of a ferromagnet's magnetization via only electric currents requires the efficient generation of current-driven spin-torques. In magnetic structures based on topological insulators (TIs) current-induced spin-orbit torques can be generated. Here we show that the addition of graphene, or bilayer graphene, to a TI-based magnetic structure greatly enhances the current-induced spin density accumulation and significantly reduces the amount of power dissipated. We find that this enhancement can be as high as a factor of 100, giving rise to a giant Edelstein effect. Such a large enhancement is due to the high mobility of graphene (bilayer graphene) and to the fact that the graphene (bil…
Heat diffusion in the disordered electron gas
We study the thermal conductivity of the disordered two-dimensional electron gas. To this end we analyze the heat density-heat density correlation function concentrating on the scattering processes induced by the Coulomb interaction in the sub-temperature energy range. These scattering processes are at the origin of logarithmic corrections violating the Wiedemann-Franz law. Special care is devoted to the definition of the heat density in the presence of the long-range Coulomb interaction. To clarify the structure of the correlation function, we present details of a perturbative calculation. While the conservation of energy strongly constrains the general form of the heat density-heat densit…