0000000000529851

AUTHOR

Maxim Morozov

Assessing the accuracy of industrial robots through metrology for the enhancement of automated non-destructive testing

This work presents the study of the accuracy of an industrial robot KR5 arc HW, used to perform quality inspections of components with complex shapes. Metrology techniques such as laser tracking and large volume photogrammetry were deployed to quantify both pose and dynamic path accuracies of the robot in accordance with ISO 9283:1998. The overall positioning pose inaccuracy of the robot is found to be almost 1 mm and path inaccuracy at 100% of the robot rated velocity is 4.5 mm. The maximum pose orientation inaccuracy is found to be 14 degrees and the maximum path orientation inaccuracy is 5 degrees. Despite of the significant maximum inaccuracies, uncertainty of a robotic scanning applica…

research product

Flexible integration of robotics, ultrasonics and metrology for the inspection of aerospace components

The performance of modern robotic manipulators has allowed research in recent years, for the development of fast automated non-destructive testing (NDT) of complex geometries. Contemporary robots are well suited for their accuracy and flexibility when adapting to new tasks. Several robotic inspection prototype systems and a number of commercial products have been created around the world. This paper describes the latest progress of a new phase of the research applied to a composite aerospace component of size 1 by 3 metres. A multi robot flexible inspection cell was used to take the fundamental research and the feasibility studies to higher technology readiness levels, all set for future in…

research product

Computer-aided tool path generation for robotic Non-Destructive Inspection

Compared to manual Non-Destructive Testing (NDT) for inspection of engineering components, automated robotic deployment of the same NDT techniques offers an increase in accuracy, precision and speed of inspection while reducing production time and associated labour costs. Traditionally, the robot tool path is either taught or programmed manually. Automation of NDT tool path generation, as presented in this paper, offers further significant time reduction, and an increase in the flexibility of inspection planning compared to manual robot teaching and programming. Moreover, such a solution helps to maintain a controlled probe orientation with respect to the scanned surface, and thus which can…

research product

Conformable eddy current array delivery

The external surface of stainless steel containers used for the interim storage of nuclear material may be subject to Atmospherically Induced Stress Corrosion Cracking (AISCC). The inspection of such containers poses a significant challenge due to the large quantities involved; therefore, automating the inspection process is of considerable interest. This paper reports upon a proof-of-concept project concerning the automated NDT of a set of test containers containing artificially generated AISCCs. An Eddy current array probe with a conformable padded surface from Eddyfi was used as the NDT sensor and end effector on a KUKA KR5 arc HW robot. A kinematically valid cylindrical raster scan path…

research product

Fast ultrasonic phased array inspection of complex geometries delivered through robotic manipulators and high speed data acquisition instrumentation

Performance of modern robotic manipulators has enabled research and development of fast automated non-destructive testing (NDT) systems for complex geometries. This paper presents recent outcomes of work aimed at removing the bottleneck due to data acquisition rates, to fully exploit the scanning speed of modern 6-DoF manipulators. State of the art ultrasonic instrumentation has been integrated into a large robot cell to enable fast data acquisition, high scan resolutions and accurate positional encoding. A fibre optic connection between the ultrasonic instrument and the server computer enables data transfer rates up to 1.6GB/s. Multiple data collection methods are compared. Performance of …

research product