0000000000529887

AUTHOR

Vladimir Karas

0000-0002-5760-0459

showing 6 related works from this author

A relativistically smeared spectrum in the neutron star X-ray binary 4U 1705−44: looking at the inner accretion disc with X-ray spectroscopy

2009

Iron emission lines at 6.4-6.97 keV, identified with fluorescent Kalpha transitions, are among the strongest discrete features in the X-ray band. These are therefore one of the most powerful probes to infer the properties of the plasma in the innermost part of the accretion disc around a compact object. In this paper we present a recent XMM observation of the X-ray burster 4U 1705-44, where we clearly detect a relativistically smeared iron line at about 6.7 keV, testifying with high statistical significance that the line profile is distorted by high velocity motion in the accretion disc. As expected from disc reflection models, we also find a significant absorption edge at about 8.3 keV; th…

High Energy Astrophysical Phenomena (astro-ph.HE)PhysicsLine-of-sightAstrophysics::High Energy Astrophysical PhenomenaX-ray binaryFOS: Physical sciencesAstronomy and AstrophysicsAstrophysicsRadiusCompact starline: formation line: identification stars: individual: 4U 1705-44 stars: neutron X-ray: binaries X-rays: generalNeutron starSettore FIS/05 - Astronomia E AstrofisicaSpace and Planetary ScienceAstrophysics::Earth and Planetary AstrophysicsEmission spectrumAstrophysics - High Energy Astrophysical PhenomenaSchwarzschild radiusAstrophysics::Galaxy AstrophysicsLine (formation)Monthly Notices of the Royal Astronomical Society
researchProduct

A self-consistent approach to the hard and soft states of 4U 1705-44

2010

We analyzed two XMM-Newton observations of the bright atoll source 4U 1705-44, which can be considered a prototype of the class of the persistent NS LMXBs showing both hard and soft states. The first observation was performed when the source was in a hard low flux state, the second during a soft, high-flux state. Both the spectra show broad iron emission lines. We fit the spectra using a two-component model, together with a reflection model specifically suited to the case of a neutron star, where the incident spectrum has a blackbody shape. In the soft state, the reflection model, convolved with a relativistic smearing component, consistently describes the broad features present in the spec…

PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstronomy and AstrophysicsAstrophysicsAstrophysicsSpectral lineBoundary layerNeutron starSettore FIS/05 - Astronomia E AstrofisicaSoft stateSpace and Planetary ScienceIonizationThermalBlack-body radiationEmission spectrumAstrophysics - High Energy Astrophysical Phenomena
researchProduct

The Large Observatory For x-ray Timing

2014

The Large Observatory For x-ray Timing (LOFT) was studied within ESA M3 Cosmic Vision framework and participated in the final down-selection for a launch slot in 2022-2024. Thanks to the unprecedented combination of effective area and spectral resolution of its main instrument, LOFT will study the behaviour of matter under extreme conditions, such as the strong gravitational field in the innermost regions of accretion flows close to black holes and neutron stars, and the supra-nuclear densities in the interior of neutron stars. The science payload is based on a Large Area Detector (LAD, 10 m 2 effective area, 2-30 keV, 240 eV spectral resolution, 1 deg collimated field of view) and a WideFi…

x-ray and γ-ray instrumentationcompact objects; microchannel plates; X-ray detectors; X-ray imaging; X-ray spectroscopy; X-ray timing; Electronic Optical and Magnetic Materials; Condensed Matter Physics; Computer Science Applications1707 Computer Vision and Pattern Recognition; Applied Mathematics; Electrical and Electronic EngineeringVisionX-ray timingObservatoriesField of view01 natural sciences7. Clean energyneutron starsObservatory010303 astronomy & astrophysicsPhysicsEquipment and servicesApplied MathematicsAstrophysics::Instrumentation and Methods for AstrophysicsSteradian[ SDU.ASTR.IM ] Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Computer Science Applications1707 Computer Vision and Pattern RecognitionX-ray detectorsCondensed Matter Physicscompact objectsX-ray spectroscopyAstrophysics - Instrumentation and Methods for AstrophysicsX-ray detector[PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Cosmic VisionSpectral resolutionmicrochannel platesAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesNOmicrochannel platecompact objects; microchannel plates; X-ray detectors; X-ray imaging; X-ray spectroscopy; X-ray timing; Electronic Optical and Magnetic Materials; Condensed Matter Physics; Applied Mathematics; Electrical and Electronic EngineeringSettore FIS/05 - Astronomia e AstrofisicaX-rayscompact object0103 physical sciencesElectronicOptical and Magnetic MaterialsElectrical and Electronic EngineeringSpectral resolutionInstrumentation and Methods for Astrophysics (astro-ph.IM)dense hadronic matterSensors010308 nuclear & particles physicsX-ray imagingAstronomyAccretion (astrophysics)[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Neutron star13. Climate actionx-ray and γ-ray instrumentation; neutron stars; dense hadronic matter[ PHYS.ASTR.IM ] Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Gamma-ray burstastro-ph.IM
researchProduct

Accretion in strong field gravity with eXTP

2019

In this paper we describe the potential of the enhanced X-ray Timing and Polarimetry (eXTP) mission for studies related to accretion flows in the strong field gravity regime around both stellar-mass and supermassive black-holes. eXTP has the unique capability of using advanced 'spectral-timing-polarimetry' techniques to analyze the rapid variations with three orthogonal diagnostics of the flow and its geometry, yielding unprecedented insight into the inner accreting regions, the effects of strong field gravity on the material within them and the powerful outflows which are driven by the accretion process.

ACTIVE GALACTIC NUCLEIAccretionaccretion; black holes physics; X-ray; Physics and Astronomy (all)black holes physicAstronomyAstrophysics::High Energy Astrophysical PhenomenaBlack holes physicsPolarimetryFOS: Physical sciencesBLACK-HOLE SPINGeneral Physics and AstronomyStrong fieldAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesX-rayPhysics and Astronomy (all)ELECTROMAGNETIC EMISSIONSettore FIS/05 - Astronomia e Astrofisicablack holes physicsaccretion0103 physical sciencesAstrophysics::Solar and Stellar Astrophysics010306 general physics010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)XMM-NEWTONPhysicsLENS-THIRRING PRECESSION[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph]QUASI-PERIODIC OSCILLATIONS[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]IRON KAccretion (astrophysics)X ray[SDU]Sciences of the Universe [physics]ULTRA-FAST OUTFLOWSAstrophysics::Earth and Planetary AstrophysicsSPECTRAL FEATURESAstrophysics - High Energy Astrophysical Phenomena[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]X-RAY BINARIESScience China Physics, Mechanics & Astronomy
researchProduct

The enhanced X-ray Timing and Polarimetry mission—eXTP

2019

In this paper we present the enhanced X-ray Timing and Polarimetry mission - eXTP. eXTP is a space science mission designed to study fundamental physics under extreme conditions of density, gravity and magnetism. The mission aims at determining the equation of state of matter at supra-nuclear density, measuring effects of QED, and understanding the dynamics of matter in strong-field gravity. In addition to investigating fundamental physics, eXTP will be a very powerful observatory for astrophysics that will provide observations of unprecedented quality on a variety of galactic and extragalactic objects. In particular, its wide field monitoring capabilities will be highly instrumental to det…

Gravity (chemistry)Computer sciencespace mission: eXTPX-ray timingPolarimetryGeneral Physics and AstronomyFOS: Physical sciences01 natural sciences7. Clean energyPhysics and Astronomy (all)Settore FIS/05 - Astronomia E AstrofisicaObservatoryX-ray instrumentation0103 physical sciencesX-ray polarimetryGround segmentAerospace engineering010306 general physics010303 astronomy & astrophysicsInstrumentation and Methods for Astrophysics (astro-ph.IM)High Energy Astrophysical Phenomena (astro-ph.HE)Spacecraftsezelebusiness.industryPayloadGravitational waveAstrophysics::Instrumentation and Methods for Astrophysicsspace mission: eXTP; X-ray instrumentation; X-ray polarimetry; X-ray timing; Physics and Astronomy (all)Space SciencebusinessAstrophysics - Instrumentation and Methods for AstrophysicsAstrophysics - High Energy Astrophysical Phenomena[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

The Large Area Detector onboard the eXTP mission

2018

The eXTP (enhanced X-ray Timing and Polarimetry) mission is a major project of the Chinese Academy of Sciences (CAS) and China National Space Administration (CNSA) currently performing an extended phase A study and proposed for a launch by 2025 in a low-earth orbit. The eXTP scientific payload envisages a suite of instruments (Spectroscopy Focusing Array, Polarimetry Focusing Array, Large Area Detector and Wide Field Monitor) offering unprecedented simultaneous wide-band X-ray spectral, timing and polarimetry sensitivity. A large European consortium is contributing to the eXTP study and it is expected to provide key hardware elements, including a Large Area Detector (LAD). The LAD instrumen…

Silicon detectorX-ray AstronomyComputer sciencecapillary platePolarimetryFOS: Physical sciencesField of viewContext (language use)Condensed Matter Physic01 natural sciencesSettore FIS/05 - Astronomia E Astrofisica0103 physical sciencesElectroniccapillary plates; Silicon detectors; Timing; X-ray Astronomy; Electronic Optical and Magnetic Materials; Condensed Matter Physics; Computer Science Applications1707 Computer Vision and Pattern Recognition; Applied Mathematics; Electrical and Electronic EngineeringTimingOptical and Magnetic MaterialsAerospace engineeringSpectral resolutionElectrical and Electronic Engineering010306 general physicscapillary plates; Silicon detectors; Timing; X-ray Astronomy; astro-ph.IM; astro-ph.IM; Electronic Optical and Magnetic Materials; Condensed Matter Physics; Computer Science Applications1707 Computer Vision and Pattern Recognition; Applied Mathematics; Electrical and Electronic EngineeringInstrumentation and Methods for Astrophysics (astro-ph.IM)X-ray astronomycapillary plates010308 nuclear & particles physicsbusiness.industryPayloadElectronic Optical and Magnetic MaterialApplied MathematicsDetectorAntenna apertureComputer Science Applications1707 Computer Vision and Pattern RecognitionCondensed Matter PhysicsApplied MathematicSilicon detectorsAstrophysics - Instrumentation and Methods for Astrophysicsbusinessastro-ph.IM
researchProduct