0000000000529901

AUTHOR

Shuang-nan Zhang

0000-0001-5586-1017

showing 7 related works from this author

The Large Area Detector onboard the eXTP mission

2022

The Large Area Detector (LAD) is the high-throughput, spectral-timing instrument onboard the eXTP mission, a flagship mission of the Chinese Academy of Sciences and the China National Space Administration, with a large European participation coordinated by Italy and Spain. The eXTP mission is currently performing its phase B study, with a target launch at the end-2027. The eXTP scientific payload includes four instruments (SFA, PFA, LAD and WFM) offering unprecedented simultaneous wide-band X-ray timing and polarimetry sensitivity. The LAD instrument is based on the design originally proposed for the LOFT mission. It envisages a deployed 3.2 m2 effective area in the 2-30 keV energy range, a…

Settore FIS/05 - Astronomia E AstrofisicaEXTP LAD Silicon Drift Detector X-ray timing
researchProduct

Accretion in strong field gravity with eXTP

2019

In this paper we describe the potential of the enhanced X-ray Timing and Polarimetry (eXTP) mission for studies related to accretion flows in the strong field gravity regime around both stellar-mass and supermassive black-holes. eXTP has the unique capability of using advanced 'spectral-timing-polarimetry' techniques to analyze the rapid variations with three orthogonal diagnostics of the flow and its geometry, yielding unprecedented insight into the inner accreting regions, the effects of strong field gravity on the material within them and the powerful outflows which are driven by the accretion process.

ACTIVE GALACTIC NUCLEIAccretionaccretion; black holes physics; X-ray; Physics and Astronomy (all)black holes physicAstronomyAstrophysics::High Energy Astrophysical PhenomenaBlack holes physicsPolarimetryFOS: Physical sciencesBLACK-HOLE SPINGeneral Physics and AstronomyStrong fieldAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesX-rayPhysics and Astronomy (all)ELECTROMAGNETIC EMISSIONSettore FIS/05 - Astronomia e Astrofisicablack holes physicsaccretion0103 physical sciencesAstrophysics::Solar and Stellar Astrophysics010306 general physics010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)XMM-NEWTONPhysicsLENS-THIRRING PRECESSION[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph]QUASI-PERIODIC OSCILLATIONS[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]IRON KAccretion (astrophysics)X ray[SDU]Sciences of the Universe [physics]ULTRA-FAST OUTFLOWSAstrophysics::Earth and Planetary AstrophysicsSPECTRAL FEATURESAstrophysics - High Energy Astrophysical Phenomena[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]X-RAY BINARIESScience China Physics, Mechanics & Astronomy
researchProduct

Study of BESIII trigger efficiencies with the 2018 J/psi data

2021

Using a dedicated data sample taken in 2018 on the $J/\psi$ peak, we perform a detailed study of the trigger efficiencies of the BESIII detector. The efficiencies are determined from three representative physics processes, namely Bhabha-scattering, dimuon production and generic hadronic events with charged particles. The combined efficiency of all active triggers approaches $100\%$ in most cases with uncertainties small enough as not to affect most physics analyses.

Nuclear and High Energy Physicshadronic eventsHadron01 natural sciencesNOHigh Energy Physics - ExperimentNuclear physicsSubatomär fysikBESIII; trigger efficiency; Bhabha; dimuon; hadronic events0103 physical sciencesSubatomic PhysicsBhabhaddc:530trigger efficiency010306 general physicsInstrumentationBhabha scatteringPhysicsdimuon010308 nuclear & particles physicsDetectorBESIIIAstronomy and AstrophysicsCharged particleHigh Energy Physics::ExperimentBESIII trigger efficiency Bhabha dimuon hadronic events
researchProduct

Measurement of the branching fraction of the decay Bs0→KS0KS0

2020

A measurement of the branching fraction of the decay Bs0→KS0KS0 is performed using proton-proton collision data corresponding to an integrated luminosity of 5 fb-1 collected by the LHCb experiment between 2011 and 2016. The branching fraction is determined to be B(Bs0→KS0KS0)=[8.3±1.6(stat)±0.9(syst)±0.8(norm)±0.3(fs/fd)]×10-6, where the first uncertainty is statistical, the second is systematic, and the third and fourth are due to uncertainties on the branching fraction of the normalization mode B0→φKS0 and the ratio of hadronization fractions fs/fd. This is the most precise measurement of this branching fraction to date. Furthermore, a measurement of the branching fraction of the decay B0…

PhysicsNuclear physicsNormalization (statistics)010308 nuclear & particles physicsBranching fraction0103 physical sciences010306 general physics01 natural sciencesHadronizationPhysical Review D
researchProduct

Observatory science with eXTP

2019

Disponible preprint en: arXiv:1812.04023v1 [astro-ph.HE] [v1] Mon, 10 Dec 2018 19:00:52 UTC (4,376 KB)

cataclysmic binariesAstronomyFIELD CAMERAS OBSERVATIONSspace research instruments nuclear astrophysics flare stars accretion and accretion disks mass loss and stellar winds cataclysmic binaries X-ray binaries supernova remnants active galactic nuclei X-ray bursts gamma-ray bursts gravitational wavesGeneral Physics and Astronomygamma-ray burstspace research instrument01 natural sciencesGamma ray burstsObservatoryAccretion and accretion disksAstrophysics::Solar and Stellar Astrophysics010303 astronomy & astrophysicsgravitational waveaccretion and accretion diskPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)supernova remnants[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph][SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]flare starsgamma-ray burstsAstrophysics::Instrumentation and Methods for Astrophysicsaccretion and accretion disks; active galactic nuclei; cataclysmic binaries; flare stars; gamma-ray bursts; gravitational waves; mass loss and stellar winds; nuclear astrophysics; space research instruments; supernova remnants; X-ray binaries; X-ray bursts; Physics and Astronomy (all)Space research instrumentsX ray burstSupernovaX-ray binariesgravitational wavesaccretion and accretion disksQUIETHigh massX-ray binarieMass loss and stellar windsNuclear astrophysicsGamma-ray burstsspace research instrumentsAstrophysics - High Energy Astrophysical PhenomenaPULSAR-WIND NEBULAEFAST RADIO-BURSTSAstrofísica nuclearActive galactic nucleusTIDAL DISRUPTIONSupernova remnantsAstrophysics::High Energy Astrophysical Phenomenanuclear astrophysicsPolarimetryFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic AstrophysicsACCRETING NEUTRON-STARSaccretion and accretion disks; active galactic nuclei; cataclysmic binaries; flare stars; gamma-ray bursts; gravitational waves; mass loss and stellar winds; nuclear astrophysics; space research instruments; supernova remnants; X-ray binaries; X-ray burstsGravitational wavesPhysics and Astronomy (all)cataclysmic binarieSettore FIS/05 - Astronomia e AstrofisicaSUPERMASSIVE BLACK-HOLES0103 physical sciences010306 general physicsX-ray burstAstrophysics::Galaxy AstrophysicsCataclysmic binariesActive galactic nucleiflare starAstronomyWhite dwarfFlare starsStarssupernova remnantQB460-466 Astrophysics[SDU]Sciences of the Universe [physics]mass loss and stellar wind:Física::Astronomia i astrofísica [Àrees temàtiques de la UPC]active galactic nucleiX-RAYX-ray burstsSupernova remmantsmass loss and stellar windsX ray binaries[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]SEYFERT 1 GALAXYnuclear astrophysic
researchProduct

The Large Area Detector onboard the eXTP mission

2018

The eXTP (enhanced X-ray Timing and Polarimetry) mission is a major project of the Chinese Academy of Sciences (CAS) and China National Space Administration (CNSA) currently performing an extended phase A study and proposed for a launch by 2025 in a low-earth orbit. The eXTP scientific payload envisages a suite of instruments (Spectroscopy Focusing Array, Polarimetry Focusing Array, Large Area Detector and Wide Field Monitor) offering unprecedented simultaneous wide-band X-ray spectral, timing and polarimetry sensitivity. A large European consortium is contributing to the eXTP study and it is expected to provide key hardware elements, including a Large Area Detector (LAD). The LAD instrumen…

Silicon detectorX-ray AstronomyComputer sciencecapillary platePolarimetryFOS: Physical sciencesField of viewContext (language use)Condensed Matter Physic01 natural sciencesSettore FIS/05 - Astronomia E Astrofisica0103 physical sciencesElectroniccapillary plates; Silicon detectors; Timing; X-ray Astronomy; Electronic Optical and Magnetic Materials; Condensed Matter Physics; Computer Science Applications1707 Computer Vision and Pattern Recognition; Applied Mathematics; Electrical and Electronic EngineeringTimingOptical and Magnetic MaterialsAerospace engineeringSpectral resolutionElectrical and Electronic Engineering010306 general physicscapillary plates; Silicon detectors; Timing; X-ray Astronomy; astro-ph.IM; astro-ph.IM; Electronic Optical and Magnetic Materials; Condensed Matter Physics; Computer Science Applications1707 Computer Vision and Pattern Recognition; Applied Mathematics; Electrical and Electronic EngineeringInstrumentation and Methods for Astrophysics (astro-ph.IM)X-ray astronomycapillary plates010308 nuclear & particles physicsbusiness.industryPayloadElectronic Optical and Magnetic MaterialApplied MathematicsDetectorAntenna apertureComputer Science Applications1707 Computer Vision and Pattern RecognitionCondensed Matter PhysicsApplied MathematicSilicon detectorsAstrophysics - Instrumentation and Methods for Astrophysicsbusinessastro-ph.IM
researchProduct

Dense matter with eXTP

2019

In this White Paper we present the potential of the Enhanced X-ray Timing and Polarimetry (eXTP) mission for determining the nature of dense matter; neutron star cores host an extreme density regime which cannot be replicated in a terrestrial laboratory. The tightest statistical constraints on the dense matter equation of state will come from pulse profile modelling of accretion-powered pulsars, burst oscillation sources, and rotation-powered pulsars. Additional constraints will derive from spin measurements, burst spectra, and properties of the accretion flows in the vicinity of the neutron star. Under development by an international Consortium led by the Institute of High Energy Physics o…

GAMMA-RAY PULSARSdense matterAstrophysics::High Energy Astrophysical PhenomenaPolarimetryGeneral Physics and AstronomyFOS: Physical sciencesAstrophysicsNeutronBRIGHTNESS OSCILLATIONS7. Clean energy01 natural sciencesINNER ACCRETION DISKSSpectral lineX-raydense matter; equation of state; neutron; X-rays; Physics and Astronomy (all)Physics and Astronomy (all)Equacions d'estatneutronPulsar0103 physical sciencesMILLISECOND PULSARSX-raysNEUTRON-STARRADIUS CONSTRAINTS010306 general physics010303 astronomy & astrophysicsRELATIVISTIC IRON LINEequation of statePhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)LIGHT CURVESNeutronsEquation of stateQUASI-PERIODIC OSCILLATIONSX-RaysStarke Wechselwirkung und exotische Kerne – Abteilung BlaumAstrophysics::Instrumentation and Methods for AstrophysicsEQUATION-OF-STATEAccretion (astrophysics)Neutron star:Física::Astronomia i astrofísica [Àrees temàtiques de la UPC]Raigs XAstrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaDense matterDense matter
researchProduct