0000000000530017

AUTHOR

A. Holt

Extended shell model calculation for even N = 82 isotones with a realistic effective interaction

The shell model within the $2s1d0g_{7/2}0h_{11/2}$ shell is applied to calculate nuclear structure properties of the even Z=52 - 62, N=82 isotones. The results are compared with experimental data and with the results of a quasiparticle random-phase approximation (QRPA) calculation. The interaction used in these calculations is a realistic two-body G-matrix interaction derived from modern meson-exchange potential models for the nucleon-nucleon interaction. For the shell model all the two-body matrix elements are renormalized by the $\hat{Q}$-box method whereas for the QRPA the effective interaction is defined by the G-matrix.

research product

ATLAS beam test results

Many different configurations of electronics and-semiconductor strip detectors were studied in 1995 using the ATLAS tracking detector test area at the H8 beam-line of the CERN SPS. A significant fraction of these investigations are presented elsewhere in this volume and this paper will concentrate on the results with silicon strip detectors read out with electronics preserving the pulse height information. Data has been collected with the ADAM, APV5 and FElix read-out chips on a number of different detectors. The first results are presented for read out with LHC electronics of detectors to the ATLAS-A specification of 112.5 mu m pitch, employing n-strips in n-type silicon, capacitive coupli…

research product

Study of odd-mass N = 82 isotones with realistic effective interactions

The microscopic quasiparticle-phonon model, MQPM, is used to study the energy spectra of the odd $Z=53 - 63$, N=82 isotones. The results are compared with experimental data, with the extreme quasiparticle-phonon limit and with the results of an unrestricted $2s1d0g_{7/2}0h_{11/2}$ shell model (SM) calculation. The interaction used in these calculations is a realistic two-body G-matrix interaction derived from modern meson-exchange potential models for the nucleon-nucleon interaction. For the shell model all the two-body matrix elements are renormalized by the $\hat{Q}$-box method whereas for the MQPM the effective interaction is defined by the G-matrix.

research product