Atrial fibrillation signatures on intracardiac electrograms identified by deep learning
BACKGROUND: Automatic detection of atrial fibrillation (AF) by cardiac devices is increasingly common yet sub-optimally groups AF, flutter or tachycardia (AT) together as ‘high rate events’. This may delay or misdirect therapy. OBJECTIVE: We hypothesized that deep learning (DL) can accurately classify AF from AT by revealing electrogram (EGM) signatures. METHODS: We studied 86 patients in whom the diagnosis of AF or AT was established at electrophysiological study (25 female, 65 ± 11 years). Custom DL architectures were trained to identify AF using N = 29,340 unipolar and N = 23,760 bipolar EGM segments. We compared DL to traditional classifiers based on rate or regularity. We explained DL …