0000000000530372

AUTHOR

Petra Berenbrink

showing 6 related works from this author

Self-stabilizing Balls & Bins in Batches

2016

A fundamental problem in distributed computing is the distribution of requests to a set of uniform servers without a centralized controller. Classically, such problems are modelled as static balls into bins processes, where m balls (tasks) are to be distributed to n bins (servers). In a seminal work, [Azar et al.; JoC'99] proposed the sequential strategy Greedy[d] for n = m. When thrown, a ball queries the load of d random bins and is allocated to a least loaded of these. [Azar et al.; JoC'99] showed that d=2 yields an exponential improvement compared to d=1. [Berenbrink et al.; JoC'06] extended this to m ⇒ n, showing that the maximal load difference is independent of m for d=2 (in contrast…

Mathematical optimizationMarkov chainSelf-stabilization0102 computer and information sciencesNew variantExpected value01 natural sciencesBinExponential functionCombinatorics010104 statistics & probability010201 computation theory & mathematicsTheoryofComputation_ANALYSISOFALGORITHMSANDPROBLEMCOMPLEXITYServerBall (bearing)0101 mathematicsMathematicsProceedings of the 2016 ACM Symposium on Principles of Distributed Computing
researchProduct

Multiple-Choice Balanced Allocation in (Almost) Parallel

2012

We consider the problem of resource allocation in a parallel environment where new incoming resources are arriving online in groups or batches.

Mathematical optimizationResource allocationLoad vectorMultiple choiceMathematics
researchProduct

Distributing Storage in Cloud Environments

2013

Cloud computing has a major impact on today's IT strategies. Outsourcing applications from IT departments to the cloud relieves users from building big infrastructures as well as from building the corresponding expertise, and allows them to focus on their main competences and businesses. One of the main hurdles of cloud computing is that not only the application, but also the data has to be moved to the cloud. Networking speed severely limits the amount of data that can travel between the cloud and the user, between different sites of the same cloud provider, or indeed between different cloud providers. It is therefore important to keep applications near the data itself. This paper investig…

Cloud computing securityComputer sciencebusiness.industryCloud testingDistributed computingLocalityThe InternetCloud computingLoad balancing (computing)businessCloud storageOutsourcing2013 IEEE International Symposium on Parallel & Distributed Processing, Workshops and Phd Forum
researchProduct

Randomized renaming in shared memory systems.

2021

Abstract Renaming is a task in distributed computing where n processes are assigned new names from a name space of size m . The problem is called tight if m = n , and loose if m > n . In recent years renaming came to the fore again and new algorithms were developed. For tight renaming in asynchronous shared memory systems, Alistarh et al. describe a construction based on the AKS network that assigns all names within O ( log n ) steps per process. They also show that, depending on the size of the name space, loose renaming can be done considerably faster. For m = ( 1 + ϵ ) ⋅ n and constant ϵ , they achieve a step complexity of O ( log log n ) . In this paper we consider tight as well as loos…

Discrete mathematicsShared memory modelSpeedupComputer Networks and CommunicationsComputer science020206 networking & telecommunications02 engineering and technologyParallel computingTheoretical Computer ScienceRandomized algorithmTask (computing)Constant (computer programming)Shared memoryArtificial IntelligenceHardware and ArchitectureAsynchronous communicationDistributed algorithm0202 electrical engineering electronic engineering information engineeringOverhead (computing)020201 artificial intelligence & image processingSoftware
researchProduct

Balls into non-uniform bins

2014

Balls-into-bins games for uniform bins are widely used to model randomized load balancing strategies. Recently, balls-into-bins games have been analysed under the assumption that the selection probabilities for bins are not uniformly distributed. These new models are motivated by properties of many peer-to-peer (P2P) networks, which are not able to perfectly balance the load over the bins. While previous evaluations try to find strategies for uniform bins under non-uniform bin selection probabilities, this paper investigates heterogeneous bins, where the "capacities" of the bins might differ significantly. We show that heterogeneous environments can even help to distribute the load more eve…

Discrete mathematicsMathematical optimizationComputational complexity theoryComputer Networks and CommunicationsComputer scienceDistributed computingAstrophysics::Cosmology and Extragalactic AstrophysicsPhysics::Data Analysis; Statistics and ProbabilityLoad balancing (computing)BinTheoretical Computer ScienceLoad managementCapacity planningArtificial IntelligenceHardware and ArchitectureTheoryofComputation_ANALYSISOFALGORITHMSANDPROBLEMCOMPLEXITYBounded functionBall (bearing)Resource allocationHardware_ARITHMETICANDLOGICSTRUCTURESGame theorySoftwareMathematicsMathematicsofComputing_DISCRETEMATHEMATICS2010 IEEE International Symposium on Parallel & Distributed Processing (IPDPS)
researchProduct

Self-stabilizing Balls & Bins in Batches

2016

A fundamental problem in distributed computing is the distribution of requests to a set of uniform servers without a centralized controller. Classically, such problems are modeled as static balls into bins processes, where $m$ balls (tasks) are to be distributed to $n$ bins (servers). In a seminal work, Azar et al. proposed the sequential strategy \greedy{d} for $n=m$. When thrown, a ball queries the load of $d$ random bins and is allocated to a least loaded of these. Azar et al. showed that $d=2$ yields an exponential improvement compared to $d=1$. Berenbrink et al. extended this to $m\gg n$, showing that the maximal load difference is independent of $m$ for $d=2$ (in contrast to $d=1$). W…

FOS: Computer and information sciencesComputer Science - Distributed Parallel and Cluster ComputingTheoryofComputation_ANALYSISOFALGORITHMSANDPROBLEMCOMPLEXITYDistributed Parallel and Cluster Computing (cs.DC)MathematicsofComputing_DISCRETEMATHEMATICS
researchProduct