0000000000530641

AUTHOR

S. Dommers

showing 2 related works from this author

Gain Dynamics after Ultrashort Pulse Trains in Quantum Dot based Semiconductor Optical Amplifiers

2007

We study the gain dynamics in QD-based SOAs after excitation with fs-pulse trains of up to THz repetition rates. A complete ground-state gain recovery is found for 200 GHz repetition rates and injection currents around 90 mA.

PhysicsOptical amplifierbusiness.industryOptical microcavitySemiconductor laser theorylaw.inventionOpticsQuantum dot laserQuantum dotlawOptoelectronicsSemiconductor optical gainPhotonicsbusinessUltrashort pulse
researchProduct

Ultrafast Gain Recovery in Quantum Dot based Semiconductor Optical Amplifiers

2007

Summary form only given. The limiting factor in ultrahigh bit rate amplification is the ultrafast population recovery in the resonant level, which is mainly limited by carrier capture and relaxation processes in the QD. We use pump-probe measurements resonant to the QDs confined states energies (ground and excited state) to investigate the response to a four fs-pulse train of 1 THz repetition rate. A deep insight about the capture process implied is then obtained, and direct capture from the wetting layer is identified as the dominant mechanism in the high current regime.

Optical amplifiereducation.field_of_studyMaterials sciencebusiness.industryPopulationPhysics::OpticsQuantum dot laserQuantum dotExcited stateOptoelectronicsbusinesseducationUltrashort pulseQuantum wellWetting layer2007 European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference
researchProduct