0000000000530650

AUTHOR

Jacob F. Sherson

Shaking the entropy out of a lattice:atomic filtering by vibrational excitations

We present a simple and efficient scheme to reduce atom-number fluctuations in optical lattices. The interaction-energy difference for atoms in different vibrational states is used to remove excess atomic occupation. The remaining vacant sites are then filled with atoms by merging adjacent wells, for which we implement a protocol that circumvents the constraints of unitarity. The preparation of large regions with precisely one atom per lattice site is discussed for both bosons and fermions. The resulting low-entropy Mott-insulating states may serve as high-fidelity register states for quantum computing and as a starting point for investigations of many-body physics.

research product

The Open Innovation in Science research field: a collaborative conceptualisation approach

Openness and collaboration in scientific research are attracting increasing attention from scholars and practitioners alike. However, a common understanding of these phenomena is hindered by disciplinary boundaries and disconnected research streams. We link dispersed knowledge on Open Innovation, Open Science, and related concepts such as Responsible Research and Innovation by proposing a unifying Open Innovation in Science (OIS) Research Framework. This framework captures the antecedents, contingencies, and consequences of open and collaborative practices along the entire process of generating and disseminating scientific insights and translating them into innovation. Moreover, it elucidat…

research product

Quantum state transfer between light and matter via teleportation

Quantum teleportation is an interesting feature of quantum mechanics. Entanglement is used as a link between two remote locations to transfer a quantum state without physically sending it – a process that cannot be realized utilizing merely classical tools. Furthermore it has become evident that teleportation is also an important element of future quantum networks and it can be an ingredient for quantum computation. This article reports for the first time the teleportation from light to atoms. In the experiment discussed, the quantum state of a light beam is transferred to an atomic ensemble. The key element of light-atom entanglement created via a dispersive interaction lays the foundation…

research product