0000000000530692

AUTHOR

Erik ØStreng

showing 3 related works from this author

Room-temperature plasma-enhanced atomic layer deposition of ZnO: Film growth dependence on the PEALD reactor configuration

2017

Room-temperature plasma-enhanced atomic layer deposition (PEALD) of ZnO was studied by depositing the films using diethylzinc and O2 plasma from inductively-coupled plasma (ICP) and capacitively-coupled plasma (CCP) plasma source configurations. The CCP-PEALD was operated using both remote and direct plasma. It was observed that the films deposited by means of remote ICP and CCP were all highly oxygen rich, independently on plasma operation parameters, but impurity (H, C) contents could be reduced by increasing plasma pulse time and applied power. With the direct CCP-PEALD the film composition was closer to stoichiometric, and film crystallinity was enhanced. The ZnO film growth was observe…

Materials scienceSiliconAnalytical chemistrychemistry.chemical_element02 engineering and technology01 natural sciencescapacitively-coupled plasmaAtomic layer depositionCrystallinitysinkkioksidiImpurity0103 physical sciencesMaterials ChemistryCapacitively coupled plasmata116Plasma processingplasma-enhanced atomic layer deposition010302 applied physicsta114zinc oxideSurfaces and InterfacesGeneral ChemistryPlasma021001 nanoscience & nanotechnologyCondensed Matter PhysicsSurfaces Coatings and Filmsinductively-coupled plasmachemistryInductively coupled plasma0210 nano-technologySurface and Coatings Technology
researchProduct

Atomic layer deposition of ferroelectric LiNbO3

2013

The ferroelectric and electro-optical properties of LiNbO3 make it an important material for current and future applications. It has also been suggested as a possible lead-free replacement for present PZT-devices. The atomic layer deposition (ALD) technique offers controlled deposition of films at an industrial scale and thus becomes an interesting tool for growth of LiNbO3. We here report on ALD deposition of LiNbO3 using lithium silylamide and niobium ethoxide as precursors, thereby providing good control of cation stoichiometry and films with low impurity levels of silicon. The deposited films are shown to be ferroelectric and their crystalline orientations can be guided by the choice of…

Materials scienceta114Siliconbusiness.industryNiobiumchemistry.chemical_elementNanotechnologyGeneral ChemistryCoercivityEpitaxyFerroelectricityAtomic layer depositionchemistryMaterials ChemistryOptoelectronicsCrystallitebusinessPolarization (electrochemistry)ta116J. Mater. Chem. C
researchProduct

Atomic Layer Deposition of Spinel Lithium Manganese Oxide by Film-Body-Controlled Lithium Incorporation for Thin-Film Lithium-Ion Batteries

2013

Lithium manganese oxide spinels are promising candidate materials for thin-film lithium-ion batteries owing to their high voltage, high specific capacity for storage of electrochemical energy, and minimal structural changes during battery operation. Atomic layer deposition (ALD) offers many benefits for preparing all-solid-state thin-film batteries, including excellent conformity and thickness control of the films. Yet, the number of available lithium-containing electrode materials obtained by ALD is limited. In this article, we demonstrate the ALD of lithium manganese oxide, LixMn2O4, from Mn(thd)3, Li(thd), and ozone. Films were polycrystalline in their as-deposited state and contained le…

Battery (electricity)Materials scienceta114Lithium vanadium phosphate batterySpinelInorganic chemistrychemistry.chemical_elementengineering.materialElectrochemical energy conversionSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsAtomic layer depositionGeneral EnergychemistryImpurityengineeringLithiumCrystallitePhysical and Theoretical ChemistryThe Journal of Physical Chemistry C
researchProduct