0000000000535003
AUTHOR
Alan R. Bishop
Slow-light solitons
We investigate propagation of slow-light solitons in atomic media described by the nonlinear � -model. Under a physical assumption, appropriate to the slow light propagation, we reduce the � -scheme to a simplified nonlinear model, which is also relevant to 2D dilatonic gravity. Exact solutions describing various regimes of stopping slow-light solitons can then be readily derived.
Stopping a slow-light soliton: an exact solution
We investigate propagation of a slow-light soliton in Λ-type media such as atomic vapours and Bose–Einstein condensates. We show that the group velocity of the soliton monotonically decreases with the intensity of the controlling laser field, which decays exponentially after the laser is switched off. The shock wave of the vanishing controlling field overtakes the slow soliton and stops it, while the optical information is recorded in the medium in the form of spatially localized polarization. In the strongly nonlinear regime we find an explicit exact solution describing the whole process.
Driving slow-light solitons by a controlling laser field
In the framework of the nonlinear Λ-model we investigate propagation of a slow-light soliton in atomic vapours and Bose–Einstein condensates. The velocity of the slow-light soliton is controlled by a time-dependent background field created by a controlling laser. For a fairly arbitrary time dependence of the field we find the dynamics of the slow-light soliton inside the medium. We provide an analytical description for the nonlinear dependence of the velocity of the signal on the controlling field. If the background field is turned off at some moment of time, the signal stops. We find the location and shape of the spatially localized memory bit imprinted into the medium. We show that the pr…
Slow-light solitons: Influence of relaxation
We have applied the transformation of the slow-light equations to the Liouville theory that we developed in our previous work, to study the influence of relaxation on the soliton dynamics. We solved the problem of the soliton dynamics in the presence of relaxation and found that the spontaneous emission from the upper atomic level is strongly suppressed. Our solution proves that the spatial shape of the soliton is well preserved even if the relaxation time is much shorter than the soliton time length. This fact is of great importance for applications of the slow-light soliton concept in optical information processing. We also demonstrate that relaxation plays a role of resistance to the sol…