0000000000535270
AUTHOR
R. Georges
Localization vs. Delocalization in Molecules and Clusters: Electronic and Vibronic Interactions in Mixed Valence Systems
The interplay between electron delocalization and magnetic interactions play a key role in areas as diverse as solid state chemistry (bulk magnetic materials, superconductors,...) [1] and biology (iron-sulfur proteins, manganese-oxo clusters ...) [2]. In molecular inorganic chemistry these two electronic processes have been traditionally studied independently. Thus, the electron dynamics has been extensively investigated in mixedvalence dimers [3] as exemplified by the Creutz-Taube complex [(NH3)5RuII(pyrazine)RuIII(NH3)5]. In this kind of molecular complexes one extra electron is delocalized over two diamagnetic metal sites. Therefore, they constitute model systems for the study of the ele…
Exchange Interactions I: Mechanisms
A most important phenomenon in molecular magnetism is the exchange interaction between magnetic centers. Its relevance as well as the terms and concepts required to its rationalization were stated long ago by physicists working in the quantum-mechanical theory of magnetism (Heisenberg, Dirac, van Vleck, Anderson, Zener, and many others). Depending on the extent of delocalization of the magnetic moments and on the metallic/non-metallic properties of the solid four kinds of exchange coupling were usually distinguished in the physical literature namely direct exchange, superexchange, indirect exchange and itinerant exchange [1]. The relations of these types of couplings are depicted in Figure …