0000000000535293

AUTHOR

W. Böhmer

showing 5 related works from this author

Neutron-rich isotopesTi54−57

1996

The neutron-rich isotopes $^{54\mathrm{\ensuremath{-}}57}\mathrm{Ti}$ and $^{58\mathrm{\ensuremath{-}}60}\mathrm{Cr}$ are produced by fragmentation of a 64.5 MeV/nucleon $^{65}\mathrm{Cu}^{26+}$ beam in a 90 mg/${\mathrm{cm}}^{2}$ $^{9}\mathrm{Be}$ target. Following particle identification by energy loss and time of flight, the radioactive decay was observed by \ensuremath{\beta} singles and \ensuremath{\beta}\ensuremath{\gamma}-coincidence measurements. The results obtained for $^{58\mathrm{\ensuremath{-}}60}\mathrm{Cr}$ are compared to previous results, whereas the decay of the $^{54\mathrm{\ensuremath{-}}57}\mathrm{Ti}$ isotopes is studied here. \ensuremath{\gamma}-ray intensities and en…

PhysicsNuclear and High Energy PhysicsDecay schemeIsotopes of germanium010308 nuclear & particles physics01 natural sciences7. Clean energyParticle identificationDouble beta decayIsotopes of protactinium0103 physical sciencesNeutronAtomic physics010306 general physicsNucleonRadioactive decayPhysical Review C
researchProduct

First beta-decay studies of the neutron-rich isotopes 53-55Sc and 56-59V

1998

The neutron-rich isotopes Sc53-55 and V56-59 have been produced at GANIL in interactions of a 64.5 MeV/u Cu-65 beam with a Be-9 target. They were separated by the doubly achromatic spectrometer LISE3. Beta-decay half-lives and subsequent low-energy gamma-rays were observed for the first time. The present results are compared to QRPA model predictions. The quick drop of the half-life observed at N = 33 for Ca-53(20)33 is water V-56(23)33 and absent for Sc-54(21)33, indicating a vanishing of the N = 32 subshell north to Ca-52(32). In an astrophysical context, these neutron-rich isotopes represent r-process progenitors which, after beta-decay, would produce the correlated isotopic over-abundan…

PhysicsNuclear and High Energy PhysicsIsotope010308 nuclear & particles physicsContext (language use)Alpha process[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciencesBeta decayNuclear physicsMeteoriteNucleosynthesis0103 physical sciencesr-processNeutronAtomic physics010306 general physics
researchProduct

New states in heavy Cd isotopes and evidence for weakening of the N = 82 shell structure

2000

A chemically selective laser ion source has been used in a β-decay study of heavy Ag isotopes into even-even Cd nuclides. Gamma-spectroscopic techniques in time-resolving event-by-event and multiscaling modes have permitted the identification of the first 2+ and 4+ levels in 126Cd78, 128Cd80, and tentatively the 2+ state in 130Cd82. From a comparison of these new states in 48Cd with the E(2+) and E(4+)/E(2+) level systematics of 46Pd and 52Te isotopes and several recent model predictions, possible evidence for a weakening of the spherical N = 82 neutron-shell below double-magic 132Sn is obtained.

PhysicsNuclear and High Energy PhysicsIsotopeMean field theoryHadronAnalytical chemistryNuclear fusionNuclear drip lineNuclideAtomic physicsIon sourceThe European Physical Journal A
researchProduct

Decay of Neutron-Rich Mn Nuclides and Deformation of Heavy Fe Isotopes

1998

The use of chemically selective laser ionization combined with beta-delayed neutron counting at CERN/ISOLDE has permitted identification and half-life measurements for 623-ms Mn-61 up through 14-ms Mn-69. The measured half-lives are found to be significantly longer near N=40 than the values calculated with a QRPA shell model using ground-state deformations from the FRDM and ETFSI models. Gamma-ray singles and coincidence spectroscopy has been performed for Mn-64 and Mn-66 decays to levels of Fe-64 and Fe-66, revealing a significant drop in the energy of the first 2+ state in these nuclides that suggests an unanticipated increase in collectivity near N=40.

PhysicsIsotopeSHELL modelFOS: Physical sciencesGeneral Physics and AstronomyIonizationQuasiparticleNuclear Physics - ExperimentNeutronNuclideNuclear Experiment (nucl-ex)Atomic physicsSpectroscopyNuclear ExperimentPhysical Review Letters
researchProduct

Beta-decay studies of far from stability nuclei near N = 28

1995

Abstract Beta-decay half-lives and β-delayed neutron-emission probabilities of the very neutron-rich nuclei 43 P, 42,44,45 S and 44–46 Cl, 47 Ar, which lie at or close to the N=28 magic shell, have been recently measured through β or β-n time correlation measurement. The results are compared to recent model predictions and indicate a rapid weakening of the N=28 shell effect below 48 Ca. The nuclear structure effects reflected in the decay properties of the exotic S and Cl isotopes may be the clue for the astrophysical understanding of the unusual 48 Ca 46 Ca abundance ratio measured in the solar system.

PhysicsNuclear and High Energy PhysicsSolar SystemIsotopeNuclear structureAtomic physicsBeta decayTime correlationNuclear Physics A
researchProduct