0000000000535482
AUTHOR
J. M. De Moor
Forearc carbon sink reduces long-term volatile recycling into the mantle
Carbon and other volatiles in the form of gases, fluids or mineral phases are transported from Earth's surface into the mantle at convergent margins, where the oceanic crust subducts beneath the continental crust. The efficiency of this transfer has profound implications for the nature and scale of geochemical heterogeneities in Earth's deep mantle and shallow crustal reservoirs, as well as Earth's oxidation state. However, the proportions of volatiles released from the forearc and backarc are not well constrained compared to fluxes from the volcanic arc front. Here we use helium and carbon isotope data from deeply sourced springs along two cross-arc transects to show that about 91 per cent…
Gas measurements from the Costa Rica–Nicaragua volcanic segment suggest possible along-arc variations in volcanic gas chemistry
Obtaining accurate estimates of the CO2 output from arc volcanism requires a precise understanding of the potential along-arc variations in volcanic gas chemistry, and ultimately of the magmatic gas signature of each individual arc segment. In an attempt to more fully constrain the magmatic gas signature of the Central America Volcanic Arc (CAVA), we present here the results of a volcanic gas survey performed during March and April 2013 at five degassing volcanoes within the Costa Rica-Nicaragua volcanic segment (CNVS). Observations of the volcanic gas plume made with a multicomponent gas analyzer system (Multi-GAS) have allowed characterization of the CO2/SO2-ratio signature of the plumes …
Short-period volcanic gas precursors to phreatic eruptions: Insights from Poás Volcano, Costa Rica
Texto completo del documento Volcanic eruptions involving interaction with water are amongst the most violent and unpredictable geologic phenomena on Earth. Phreatic eruptions are exceptionally difficult to forecast by traditional geophysical techniques. Here we report on short-term precursory variations in gas emissions related to phreatic blasts at Poás volcano, Costa Rica, as measured with an in situ multiple gas analyzer that was deployed at the edge of the erupting lake. Gas emitted from this hyper-acid crater lake approaches magmatic values of SO2/CO21–6 days prior to eruption. The SO2flux derived from magmatic degassing through the lake is measureable by differential optical absorpti…
Insights on Hydrothermal‐Magmatic Interactions and Eruptive Processes at Poás Volcano (Costa Rica) From High‐Frequency Gas Monitoring and Drone Measurements
Texto completo del documento Identification of unambiguous signals of volcanic unrest is crucial in hazard assessment. Processes leading to phreatic and phreatomagmatic eruptions remain poorly understood, inhibiting effective eruption forecasting. Our 5‐year gas record from Poás volcano, combined with geophysical data, reveals systematic behavior associated with hydrothermal‐magmatic eruptions. Three eruptive episodes are covered, each with distinct geochemical and geophysical characteristics. Periods with larger eruptions tend to be associated with stronger excursions in monitoring data, particularly in SO2/CO2 and SO2 flux. The explosive 2017 phreatomagmatic eruption was the largest erupt…
Aerial strategies advance volcanic gas measurements at inaccessible, strongly degassing volcanoes
Aerial measurements using unoccupied aerial systems (UAS) transform our ability to measure and monitor volcanic plumes.