0000000000535524

AUTHOR

Marco Frasca

A Critical Analysis of Classifier Selection in Learned Bloom Filters

Learned Bloom Filters, i.e., models induced from data via machine learning techniques and solving the approximate set membership problem, have recently been introduced with the aim of enhancing the performance of standard Bloom Filters, with special focus on space occupancy. Unlike in the classical case, the "complexity" of the data used to build the filter might heavily impact on its performance. Therefore, here we propose the first in-depth analysis, to the best of our knowledge, for the performance assessment of a given Learned Bloom Filter, in conjunction with a given classifier, on a dataset of a given classification complexity. Indeed, we propose a novel methodology, supported by soft…

research product

Disease–Genes Must Guide Data Source Integration in the Gene Prioritization Process

One of the main issues in detecting the genes involved in the etiology of genetic human diseases is the integration of different types of available functional relationships between genes. Numerous approaches exploited the complementary evidence coded in heterogeneous sources of data to prioritize disease-genes, such as functional profiles or expression quantitative trait loci, but none of them to our knowledge posed the scarcity of known disease-genes as a feature of their integration methodology. Nevertheless, in contexts where data are unbalanced, that is, where one class is largely under-represented, imbalance-unaware approaches may suffer a strong decrease in performance. We claim that …

research product