0000000000535528

AUTHOR

Quan Huang

showing 2 related works from this author

Growth of human cells on polyethersulfone (PES) hollow fiber membranes.

2004

A novel material of porous hollow fibers made of polyethersulfone (PES) was examined for its ability to support the growth of human cells. This material was made in the absence of solvents and had pore diameters smaller than 100 microm. Human cell lines of different tissue and cell types (endothelial, epithelial, fibroblast, glial, keratinocyte, osteoblast) were investigated for adherence, growth, spread and survival on PES by confocal laser microscopy after staining of the cells with Calcein-AM. Endothelial cell attachment and growth required pre-coating PES with either fibronectin or gelatin. The other cell types exhibited little difference in growth, spread or survival on coated or uncoa…

Cell typeMaterials scienceBiocompatibilityPolymersSurface PropertiesConfocalBiophysicsCell Culture TechniquesBioengineeringNanotechnologyBiocompatible MaterialsCell LineBiomaterialsTissue engineeringCell MovementMaterials TestingmedicineCell AdhesionHumansSulfonesCell ProliferationTissue EngineeringOsteoblastMembranes Artificialbody regionsEndothelial stem cellMembranemedicine.anatomical_structureMechanics of MaterialsCell cultureCeramics and CompositesBiophysicshuman activitiesPorosityBiomaterials
researchProduct

Vascularization and gene regulation of human endothelial cells growing on porous polyethersulfone (PES) hollow fiber membranes.

2004

Abstract Open-cell hollow fibers made of polyethersulfone (PES) manufactured in the absence of solvents with pore diameters smaller than 100 μm were examined for vascularization by human endothelial cells. The goal of this study was to determine whether the 3-D porous character of the PES surface affected human endothelial cell morphology and functions. Freshly isolated human endothelial cells from the skin (HDMEC), from the lung (HPMEC) and from umbilical cords (HUVEC) and two human endothelial cell lines, HPMEC-ST1.6R and ISO-HAS.c1 were added to PES fibers and cell adherence and growth was followed by confocal laser scanning microscopy. Prior coating of PES with gelatin or fibronectin wa…

Materials scienceAngiogenesisPolymersSurface PropertiesCellBiophysicsCell Culture TechniquesNeovascularization PhysiologicBioengineeringBiocompatible MaterialsBiomaterialsTissue engineeringMaterials TestingmedicineCell AdhesionHumansSulfonesCells CulturedCell ProliferationConfluencybiologyTissue EngineeringEndothelial CellsCell DifferentiationAdhesionbody regionsEndothelial stem cellFibronectinmedicine.anatomical_structureMembraneGene Expression RegulationMechanics of MaterialsCeramics and CompositesBiophysicsbiology.proteinhuman activitiesPorosityBiomedical engineeringBiomaterials
researchProduct