0000000000535828
AUTHOR
Vincenzo Amendola
In situ tuning of a photonic band gap with laser pulses
We report on light-induced optical tuning of colloidal photonic crystals doped with gold nanoparticles (Au-nps). By resonantly exciting the Au-np surface plasmon absorption with picosecond pulses at 0.53 micron in a standard pump-probe setup, we observed permanent changes in the stop band resonance around 1.7 micron, with blue wavelength shifts as large as 30 nm and associated to a nanoparticle reshaping. Fine tuning was achieved by controlling either the pulse energy or the irradiation time.
Donor–Acceptor Interfaces by Engineered Nanoparticles Assemblies for Enhanced Efficiency in Plastic Planar Heterojunction Solar Cells
Precisely positioning functionalized gold nanoparticles assemblies at planar donor-acceptor interfaces results in 14-fold enhancement of power conversion efficiency in P3HT/PCBM organic solar cells on plastic (ITO/PET) substrates. This result has been achieved by employing naphthalenethiol-capped gold nanoparticles (NT-Au-NPs) produced by laser ablation in liquid and size varied in the 10-30 nm range. Upon surface functionalization with the aromatic thiol, these particles self-assemble in submicrometer aggregates, which give increased light scattering. When these aggregates are deposited in the planar heterojunction between the donor and the acceptor systems, the localized scattering leads …