6533b834fe1ef96bd129d590
RESEARCH PRODUCT
Donor–Acceptor Interfaces by Engineered Nanoparticles Assemblies for Enhanced Efficiency in Plastic Planar Heterojunction Solar Cells
Stefano ScaramuzzaVincenzo AmendolaMaurizio LeoneSebastiano CataldoBruno PignataroMichelangelo ScopellitiCamillo SartorioValeria Vetrisubject
Materials sciencePHASOR APPROACHOrganic solar cellPOWER-CONVERSION EFFICIENCYNanotechnology02 engineering and technology010402 general chemistry01 natural sciencesLight scatteringCoatings and FilmsElectronicOptical and Magnetic MaterialsPhysical and Theoretical ChemistryORGANIC PHOTOVOLTAIC DEVICESSURFACTANT-FREEScatteringbusiness.industryEnergy conversion efficiencyHeterojunctionPERFORMANCESELF-ORGANIZATION021001 nanoscience & nanotechnologyFREE GOLD NANOPARTICLESAU NANOPARTICLESAcceptor0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsSurfacesEnergy (all)General EnergyColloidal goldTITANIUM-OXIDESurface modificationOptoelectronicsLASER-ABLATIONElectronic Optical and Magnetic Materials; Energy (all); Surfaces Coatings and Films; Physical and Theoretical Chemistry0210 nano-technologybusinessdescription
Precisely positioning functionalized gold nanoparticles assemblies at planar donor-acceptor interfaces results in 14-fold enhancement of power conversion efficiency in P3HT/PCBM organic solar cells on plastic (ITO/PET) substrates. This result has been achieved by employing naphthalenethiol-capped gold nanoparticles (NT-Au-NPs) produced by laser ablation in liquid and size varied in the 10-30 nm range. Upon surface functionalization with the aromatic thiol, these particles self-assemble in submicrometer aggregates, which give increased light scattering. When these aggregates are deposited in the planar heterojunction between the donor and the acceptor systems, the localized scattering leads to a larger exciton formation just in the region of interest for charge transfer. (Graph Presented).
year | journal | country | edition | language |
---|---|---|---|---|
2016-11-21 | The Journal of Physical Chemistry C |