0000000000535983

AUTHOR

Kathy K. Griendling

0000-0002-9456-8582

showing 1 related works from this author

Differential effects of diabetes on the expression of the gp91phox homologues nox1 and nox4.

2004

The nox2-dependent NADPH oxidase was shown to be a major superoxide source in vascular disease, including diabetes. Smooth muscle cells of large arteries lack the phagocytic gp91phox subunit of the enzyme; however, two homologues have been identified in these cells, nox1 and nox4. It remained to be established whether also increases in protein levels of the nonphagocytic NADPH oxidase contribute to increased superoxide formation in diabetic vessels. To investigate changes in the expression of these homologues, we measured their expression in aortic vessels of type I diabetic rats. Eight weeks after streptozotocin treatment, we found a doubling in nox1 protein expression, while the expressio…

Malemedicine.medical_specialtyXanthine OxidaseVasodilator AgentsBlotting WesternFluorescent Antibody TechniqueNitric OxideBiochemistryNitric oxideDiabetes Mellitus Experimentalchemistry.chemical_compoundNitroglycerinSuperoxidesPhysiology (medical)Internal medicinemedicineAnimalsNADH NADPH OxidoreductasesRats WistarXanthine oxidaseAortaNADPH oxidasebiologySuperoxideMyocardiumMicrofilament ProteinsElectron Spin Resonance SpectroscopyNOX4NADPH Oxidase 1Endothelial CellsNADPH OxidasesPhosphoproteinsImmunohistochemistryAcetylcholineRatsNitric oxide synthaseEndocrinologychemistryNADPH Oxidase 4NOX1cardiovascular systembiology.proteinNADPH Oxidase 1Nitric Oxide SynthaseCell Adhesion MoleculesFree radical biologymedicine
researchProduct