0000000000537200
AUTHOR
G. Martinelli
B parameters of the complete set of matrix elements of delta B = 2 operators from the lattice
We compute on the lattice the ``bag'' parameters of the five (Delta B = 2) operators of the supersymmetric basis, by combining their values determined in full QCD and in the static limit of HQET. The extrapolation of the QCD results from the accessible heavy-light meson masses to the B-meson mass is constrained by the static result. The matching of the corresponding results in HQET and in QCD is for the first time made at NLO accuracy in the MSbar(NDR) renormalization scheme. All results are obtained in the quenched approximation.
Matrix elements of decays
We present a numerical computation of matrix elements of ?I = 3/2 K ? ?? decays by using Wilson fermions. In order to extrapolate to the physical point we work at unphysical kinematics and we resort to Chiral Perturbation Theory at the next-to-leading order. In particular we explain the case of the electroweak penguins 07,8 which can contribute significantly in the theoretical prediction of sol|??/?. The study is done at ? = 6.0 on a 243 × 64 lattice.
Association of kidney disease measures with risk of renal function worsening in patients with type 1 diabetes
Background Albuminuria has been classically considered a marker of kidney damage progression in diabetic patients and it is routinely assessed to monitor kidney function. However, the role of a mild GFR reduction on the development of stage ≥3 CKD has been less explored in type 1 diabetes mellitus (T1DM) patients. Aim of the present study was to evaluate the prognostic role of kidney disease measures, namely albuminuria and reduced GFR, on the development of stage ≥3 CKD in a large cohort of patients affected by T1DM. Methods A total of 4284 patients affected by T1DM followed-up at 76 diabetes centers participating to the Italian Association of Clinical Diabetologists (Associazione Medici D…
Geometrical volume effects in the computation of the slope of the isgur-wise function
We use a method recently suggested for evaluating the slope of the Isgur-Wise function, at the zero-recoil point, on the lattice. The computations are performed in the quenched approximation to lattice QCD, on a $24^3 \times 48$ lattice at $\beta=6.2$, using an $O(a)$-improved action for the fermions. We have found unexpectedly large finite-volume effects in such a calculation. These volume corrections turned out to be purely geometrical and independent of the dynamics of the system. After the study of these effects on a smaller volume and for different quark masses, we give approximate expressions that account for them. Using these approximations we find $\xi^\prime(1)=-1.7 \pm 0.2$ and $\…
Non-perturbative renormalisation of four fermion operators and B0 −B0 bar mixing with Wilson fermions
We present new results for the renormalisation and subtraction constants for the four fermion DeltaF = 2 operators, computed non-perturbatively in the RI-MOM scheme (in the Landau gauge). From our preliminary analysis of the lattice data at beta = 6.45, for the B-0 - B-0,mixing bag-parameter we obtain B-B(RGI) = 1.46(7)(1).
Combined relativistic and static analysis for all DB = 2 operators
We analyse matrix elements of Delta B=2 operators by combining QCD results with the ones obtained in the static limit of HQET. The matching of all the QCD operators to HQET is made at NLO order. To do that we have to include the anomalous dimension matrix up to two loops, both in QCD and HQET, and the one loop matching for all the Delta B=2 operators. The matrix elements of these operators are relevant for the prediction of the B-\bar B mixing, B_s meson width difference and supersymmetric effects in Delta B=2 transitions.
Light Quark Masses from Lattice Quark Propagators at Large Momenta
We compute non-perturbatively the average up-down and strange quark masses from the large momentum (short-distance) behaviour of the quark propagator in the Landau gauge. This method, which has never been applied so far, does not require the explicit calculation of the quark mass renormalization constant. Calculations were performed in the quenched approximation, by using O(a)-improved Wilson fermions. The main results of this study are ml^RI(2GeV)=5.8(6)MeV and ms^RI(2GeV)=136(11)MeV. Using the relations between different schemes, obtained from the available four-loop anomalous dimensions, we also find ml^RGI=7.6(8)MeV and ms^RGI=177(14)MeV, and the MSbar-masses, ml^MS(2GeV)=4.8(5)MeV and …
Dynamical twisted mass fermions with light quarks
We present results of dynamical simulations with 2 flavours of degenerate Wilson twisted mass quarks at maximal twist in the range of pseudo scalar masses from 300 to 550 MeV. The simulations are performed at one value of the lattice spacing a \lesssim 0.1 fm. In order to have O(a) improvement and aiming at small residual cutoff effects, the theory is tuned to maximal twist by requiring the vanishing of the untwisted quark mass. Precise results for the pseudo scalar decay constant and the pseudo scalar mass are confronted with chiral perturbation theory predictions and the low energy constants F, \bar{l}_3 and \bar{l}_4 are evaluated with small statistical errors.
Non-perturbative renormalization of lattice operators in coordinate space
We present the first numerical implementation of a non-perturbative renormalization method for lattice operators, based on the study of correlation functions in coordinate space at short Euclidean distance. The method is applied to compute the renormalization constants of bilinear quark operators for the non-perturbative O(a)-improved Wilson action in the quenched approximation. The matching with perturbative schemes, such as MS-bar, is computed at the next-to-leading order in continuum perturbation theory. A feasibility study of this technique with Neuberger fermions is also presented.
Analysis of Σ=3 and Σ=9 Twin Boundaries in Three-Crystal Silicon Ingots
Extraction of K --> pi pi matrix elements with Wilson fermions
We present the status of a lattice calculation for the K-->pipi matrix elements of the (delta S=1) effective weak Hamiltonian, directly with two pion in the final state. We study the energy shift of two pion in a finite volume both in the I=0 and I=2 channels. We explain a method to avoid the Goldstone pole contamination in the computation of renormalization constants for (delta I=3/2) operators. Finally we show some preliminary results for the matrix elements of (delta I=1/2) operators. Our quenched simulation is done at beta=6.0, with Wilson fermions, on a (24^3 X 64) lattice.
A Theoretical Prediction of the Bs-Meson Lifetime Difference
We present the results of a quenched lattice calculation of the operator matrix elements relevant for predicting the Bs width difference. Our main result is (\Delta\Gamma_Bs/\Gamma_Bs)= (4.7 +/- 1.5 +/- 1.6) 10^(-2), obtained from the ratio of matrix elements, R(m_b)=/=-0.93(3)^(+0.00)_(-0.01). R(m_b) was evaluated from the two relevant B-parameters, B_S^{MSbar}(m_b)=0.86(2)^(+0.02)_(-0.03) and B_Bs^{MSbar}(m_b) = 0.91(3)^(+0.00)_(-0.06), which we computed in our simulation.
K --> pi pi matrix elements beyond the leading-order chiral expansion
We propose an approach for calculating $K\to\pi\pi$ decays to the next-to-leading order in chiral expansion. A detailed numerical study of this approach is being performed.
B-parameters for ΔS=2 supersymmetric operators
We present a calculation of the matrix elements of the most general set of DeltaS=2 dimension-six four-fermion operators. The values of the matrix elements are given in terms of the corresponding B-parameters. Our results can be used in many phenomenological applications, since the operators considered here give important contributions to K^0--K^0bar mixing in several extensions of the Standard Model (supersymmetry, left-right symmetric models, multi-Higgs models etc.). The determination of the matrix elements improves the accuracy of the phenomenological analyses intended to put bounds on basic parameters of the different models, as for example the pattern of the sfermion mass matrices. Th…
Matrix elements of (delta S=2) operators with Wilson fermions
We test the recent proposal of using the Ward identities to compute the K0-K0bar mixing amplitude with Wilson fermions, without the problem of spurious lattice subtractions. From our simulations, we observe no difference between the results obtained with and without subtractions. In addition, from the standard study of the complete set of (delta S=2) operators, we quote the following (preliminary) results (in the MS(NDR) scheme): Bk(2 GeV)=0.70(10), < O7^{3/2}>_{K->pi pi} = 0.10(2)(1) GeV^3, < O8^{3/2}>_{K->pi pi} = 0.49(6)(0) GeV^3.
Kaon mixing beyond the SM from N-f=2 tmQCD and model independent constraints from the UTA
We present the first unquenched, continuum limit, lattice QCD results for the matrix elements of the operators describing neutral kaon oscillations in extensions of the Standard Model. Owing to the accuracy of our calculation on Delta S = 2 weak Hamiltonian matrix elements, we are able to provide a refined Unitarity Triangle analysis improving the bounds coming from model independent constraints on New Physics. In our non-perturbative computation we use a combination of N-f = 2 maximally twisted sea quarks and Osterwalder-Seiler valence quarks in order to achieve both O(a)-improvement and continuum-like renormalization properties for the relevant four-fermion operators. The calculation of t…
B-parameters for $\Delta S = 2$ SUSY Operators
We present the first lattice measurement, using Non Perturbative Renormalization Method, of the B-parameters of the dimension-six four-fermion operators relevant for the supersymmetric corrections to the $\Delta S=2$ transitions.
Chalcogenide glass-ceramics for second harmonic generation
International audience; Permanent second harmonic generation (SHG) in chalcogenide based glass-ceramics containing highly nonlinear micro-crystals (crystalline particle size≈2-4 μm) has been demonstrated. In order to investigate whether a controlled crystallisation is an efficient way for improving the SH temporal stability and SH signal intensity of chalcogenide glasses, the Ge23Sb12S65 composition was chosen for its stability against crystallisation and atmospheric corrosion. Different amounts of metallic cadmium were introduced to promote CdS crystallite formation. Glass-ceramics with volume crystallisation were obtained by heat treating the glass samples at different temperatures from 3…
Renormalization group invariant matrix elements of Delta S = 2 and Delta I = 3/2 four fermion operators without quark masses
We introduce a new parameterization of four-fermion operator matrix elements which does not involve quark masses and thus allows a reduction of systematic uncertainties. In order to simplify the matching between lattice and continuum renormalization schemes, we express our results in terms of renormalization group invariant B-parameters which are renormalization-scheme and scale independent. As an application of our proposal, matrix elements of DI=3/2 and SUSY DS =2 operators have been computed. The calculations have been performed using the tree-level improved Clover lattice action at two different values of the strong coupling constant (beta=6/g^2=6.0 and 6.2), in the quenched approximati…
Semi-leptonic Decays of Heavy Flavours on a Fine Grained Lattice
We present the results of a numerical calculation of semi-leptonic form factors relevant for heavy flavour meson decays into light mesons, at $\beta=6.4$ on a $24^3 \times 60$ lattice, using the Wilson action in the quenched approximation. We obtain $f^+_K(0)=0.65\pm 0.18$, $V(0)=0.95\pm 0.34$, $A_1(0)=0.63\pm 0.14 $ and $A_2(0)=0.45\pm 0.33 $. We also obtain $A_1(q^2_{max})=0.62\pm 0.09$, $V(0)/A_1(0)=1.5\pm 0.28 $ and $A_2(0)/A_1(0)=0.7\pm 0.4$. The results for $f^+_K(0)$, $V(0)$ and $A_1(0)$ are consistent with the experimental data and with previous lattice determinations with larger lattice spacings. In the case of $A_2(0)$ the errors are too large to draw any firm conclusion. We have …