0000000000537243

AUTHOR

K. Erglis

Motion of magnetotactic bacteria swarms in an external field

Magnetotactic bacteria moving on circular orbits form hydrodynamically bound states. When close to a surface and with the tilting of the field in a direction close to the perpendicular to this surface these swarms move perpendicularly to the tilting angle. We describe quantitatively this motion by a continuum model with couple stress arising from the torques produced by the rotary motors of the amphitrichous magnetotactic bacteria. The model not only correctly describes the change of direction of swarm motion while inverting the tangential field but also predicts reasonable value of the torque produced by the rotary motors.

research product

Experimental research of surfaced nanoparticle thermal transport in a porous medium

Abstract Experimental research on thermally induced nanocolloid transport in a porous environment is presented. Addition of excess surfactant to a colloid with dispersed phase made of surfaced nanoparticles results in a decrease of effective Soret coefficient in a porous environment. It is shown that with sufficient amounts of surfactant added, this effect extends to a reversal of nanoparticle thermophoretic transport direction, and that the effect shows a tendency of saturation. A mechanism of thermal transport that involves slip velocity of surfactant molecules appearing near pore walls is evaluated as a possible cause of the decrease of Soret coefficient. Effects of temperature on partic…

research product

Bone marrow mononuclear cell separation yield in myocardium infarction, coronary disease and type 2 diabetes and dilated cardiomyopathy patient groups

research product