0000000000538908

AUTHOR

Pei Liu

Role of Ge nanoclusters in the performance of photodetectors compatible with Si technology

In this work, we investigate the spectral response of metal-oxide- semiconductor photodetectors based on Ge nanoclusters (NCs) embedded in a silicon dioxide (SiO2) matrix. The role of Ge NC size and density on the spectral response was evaluated by comparing the performance of PDs based on either densely packed arrays of 2 nm-diameter NCs or a more sparse array of 8 nm-diameter Ge NCs. Our Ge NC photodetectors exhibit a high spectral responsivity in the 500-1000 nm range with internal quantum efficiency of ~ 700% at - 10 V, and with NC array parameters such as NC density and size playing a crucial role in the photoconductive gain and response time. We find that the configuration with a more…

research product

High-efficiency silicon-compatible photodetectors based on Ge quantum dots

We report on high responsivity, broadband metal/insulator/semiconductor photodetectors with amorphous Ge quantum dots (a-Ge QDs) as the active absorbers embedded in a silicon dioxide matrix. Spectral responsivities between 1-4 A/W are achieved in the 500-900 nm wavelength range with internal quantum efficiencies (IQEs) as high as ∼700%. We investigate the role of a-Ge QDs in the photocurrent generation and explain the high IQE as a result of transport mechanisms via photoexcited QDs. These results suggest that a-Ge QDs are promising for high-performance integrated optoelectronic devices that are fully compatible with silicon technology in terms of fabrication and thermal budget. © 2011 Amer…

research product

Transient photoresponse and incident power dependence of high-efficiency germanium quantum dot photodetectors

We report a systematic study of time-resolved and power-dependent photoresponse in high-efficiency germanium quantum dot photodetectors (Ge-QD PDs), with internal quantum efficiencies greater than 100 over a broad wavelength, reverse bias, and incident power range. Turn-on and turn-off response times (τ on and τ off) are shown to depend on series resistance, bias, optical power, and thickness (W QD) of the Ge-QD layer, with measured τ off values down to ∼40 ns. Two different photoconduction regimes are observed at low and high reverse bias, with a transition around -3 V. A transient current overshoot phenomenon is also observed, which depends on bias and illumination power. © 2012 American …

research product