0000000000538978

AUTHOR

Georges Jolicard

Quantum dynamics by the constrained adiabatic trajectory method

We develop the constrained adiabatic trajectory method (CATM) which allows one to solve the time-dependent Schr\"odinger equation constraining the dynamics to a single Floquet eigenstate, as if it were adiabatic. This constrained Floquet state (CFS) is determined from the Hamiltonian modified by an artificial time-dependent absorbing potential whose forms are derived according to the initial conditions. The main advantage of this technique for practical implementation is that the CFS is easy to determine even for large systems since its corresponding eigenvalue is well isolated from the others through its imaginary part. The properties and limitations of the CATM are explored through simple…

research product

Adiabatic approximation for quantum dissipative systems: formulation, topology and superadiabatic tracking

A generalized adiabatic approximation is formulated for a two-state dissipative Hamiltonian which is valid beyond weak dissipation regimes. The history of the adiabatic passage is described by superadiabatic bases as in the nondissipative regime. The topology of the eigenvalue surfaces shows that the population transfer requires, in general, a strong coupling with respect to the dissipation rate. We present, furthermore, an extension of the Davis-Dykhne-Pechukas formula to the dissipative regime using the formalism of Stokes lines. Processes of population transfer by an external frequency-chirped pulse-shaped field are given as examples.

research product